15£®Æ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄÀëÐÄÂÊÊÇ$\frac{{\sqrt{3}}}{2}$£¬
Å×ÎïÏßE£ºx2=4yµÄ½¹µãFÊÇCµÄÒ»¸ö¶¥µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÓë×ø±êÖá²»ÖØºÏµÄ¶¯Ö±ÏßlÓëC½»ÓÚ²»Í¬µÄÁ½µãAºÍB£¬ÓëxÖá½»ÓÚµãM£¬ÇÒ$P£¨\frac{1}{2}£¬2£©$Âú×ãkPA+kPB=2kPM£¬ÊÔÅжϵãMÊÇ·ñΪ¶¨µã£¿ÈôÊǶ¨µãÇó³öµãMµÄ×ø±ê£»Èô²»ÊǶ¨µãÇë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÒÑÖªµÃb=1£¬ÓÖ$e=\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬a2=b2+c2=1+c2£¬µÃa£¬¼´¿ÉµÃµ½ËùÇóÍÖÔ²·½³Ì£»
£¨2£©ÉèÖ±Ïßl£ºx=my+t£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòM£¨t£¬0£©£¬
ÓÉ$\left\{\begin{array}{l}{x=my+t}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$µÃ£¨m2+4£©y2+2mty+t2-4=0£¬
¡÷=16m2-16t2+64£¾0£¬${y}_{1}{+y}_{2}=\frac{-2mt}{{m}^{2}+4}£¬{y}_{1}{y}_{2}=\frac{{t}^{2}-4}{{m}^{2}+4}$£¬
ÓÉkPA+kPB=2kPM£¬µÃ$\frac{{y}_{1}-2}{{x}_{1}-\frac{1}{2}}+\frac{{y}_{2}-2}{{x}_{2}-\frac{1}{2}}=2¡Á\frac{2}{\frac{1}{2}-t}$⇒$\frac{{y}_{1}{x}_{2}+{y}_{2}{x}_{1}-\frac{1}{2}£¨{y}_{1}+{y}_{2}£©-2£¨{x}_{1}+{x}_{2}£©+2}{{x}_{1}{x}_{2}-\frac{1}{2}£¨{x}_{1}+{x}_{2}£©+\frac{1}{4}}$=$\frac{8}{1-2t}$£®
µ±t=8ʱ£¬ÉÏʽºã³ÉÁ¢£¬

½â´ð ½â£º£¨1£©ÓÉÅ×ÎïÏßE£ºx2=4y£¬µÃF£¨0£¬1£©£¬¼´b=1£¬
ÓÖ$e=\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬a2=b2+c2=1+c2£¬
½âµÃ£ºa=2£¬c=$\sqrt{3}$£®
¡àÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨2£©ÉèÖ±Ïßl£ºx=my+t£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòM£¨t£¬0£©£¬
ÓÉ$\left\{\begin{array}{l}{x=my+t}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$µÃ£¨m2+4£©y2+2mty+t2-4=0£¬
¡÷=16m2-16t2+64£¾0
${y}_{1}{+y}_{2}=\frac{-2mt}{{m}^{2}+4}£¬{y}_{1}{y}_{2}=\frac{{t}^{2}-4}{{m}^{2}+4}$£¬
${x}_{1}+{x}_{2}=m£¨{y}_{1}+{y}_{2}£©+2t=\frac{-2{m}^{2}t}{{m}^{2}+4}+2t$=$\frac{8t}{{m}^{2}+4}$£¬x1x2=£¨my1+t£©£¨my2+t£©=$\frac{4{t}^{2}-4{m}^{2}}{{m}^{2}+4}$
y1x2+y2x1=2my1y2+t£¨y1+y2£©=$\frac{-8m}{{m}^{2}+4}$
ÓÉkPA+kPB=2kPM£¬µÃ$\frac{{y}_{1}-2}{{x}_{1}-\frac{1}{2}}+\frac{{y}_{2}-2}{{x}_{2}-\frac{1}{2}}=2¡Á\frac{2}{\frac{1}{2}-t}$⇒
$\frac{{y}_{1}{x}_{2}+{y}_{2}{x}_{1}-\frac{1}{2}£¨{y}_{1}+{y}_{2}£©-2£¨{x}_{1}+{x}_{2}£©+2}{{x}_{1}{x}_{2}-\frac{1}{2}£¨{x}_{1}+{x}_{2}£©+\frac{1}{4}}$=$\frac{8}{1-2t}$£®
⇒2t2+£¨4m-17£©t-32m+8=0⇒2t2-17t+8+m£¨4t-32£©=0
µ±t=8ʱ£¬2t2-17t+8+m£¨4t-32£©=0ºã³ÉÁ¢£¬
¹ÊMΪ¶¨µã£¨8£¬0£©£®

µãÆÀ ±¾Ì⿼²éÁËÅ×ÎïÏßÓëÍÖÔ²µÄ·½³Ì¡¢ÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÁ˶¨µãÎÊÌ⣬ÊôÓÚÖеµÌ⣬

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Éèa£¬bÊDz»Í¬µÄÖ±Ïߣ¬¦Á£¬¦ÂÊDz»Í¬µÄÆ½Ãæ£¬ÔòÏÂÁÐËĸöÃüÌâÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A£®Èôa¡Íb£¬a¡Í¦Á£¬b?¦Á£¬Ôòb¡Î¦ÁB£®Èôa¡Î¦Á£¬a¡Í¦Â£¬Ôò¦Á¡Í¦Â
C£®Èôa¡Í¦Â£¬¦Á¡Í¦Â£¬Ôòa¡Î¦ÁD£®Èôa¡Íb£¬a¡Í¦Á£¬b¡Í¦Â£¬Ôò¦Á¡Í¦Â

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Éèm¡¢nÊÇÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á¡¢¦ÂÊÇÁ½¸ö²»Í¬µÄÆ½Ãæ£¬ÔòÏÂÁÐÃüÌâ²»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èôm¡Ín£¬m¡Í¦Á£¬n?¦Á£¬Ôòn¡Î¦ÁB£®Èôm¡Í¦Â£¬¦Á¡Í¦Â£¬Ôòm¡Î¦Á»òm?¦Á
C£®Èôm¡Î¦Á£¬¦Á¡Î¦Â£¬Ôòm¡Î¦ÂD£®Èôm¡Ín£¬m¡Í¦Á£¬n¡Í¦Â£¬Ôò¦Á¡Í¦Â

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖª¼¯ºÏA={x|-2£¼x£¼2}£¬¼¯ºÏB={1£¬2}£¬ÔòA¡ÉB={1}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Éèa£¬bΪ²»ÖغϵÄÁ½ÌõÖ±Ïߣ¬¦Á£¬¦ÂΪ²»ÖغϵÄÁ½¸öÆ½Ãæ£¬¸ø
³öÏÂÁÐÃüÌ⣺
£¨1£©Èôa¡Î¦ÁÇÒb¡Î¦Á£¬Ôòa¡Îb£»       
£¨2£©Èôa¡Î¦ÁÇÒa¡Í¦Â£¬Ôò¦Á¡Î¦Â
£¨3£©Èô¦Á¡Í¦Â£¬ÔòÒ»¶¨´æÔÚÆ½Ãæ¦Ã£¬Ê¹µÃ¦Ã¡Í¦Á£¬¦Ã¡Í¦Â
£¨4£©Èô¦Á¡Í¦Â£¬ÔòÒ»¶¨´æÔÚÖ±Ïßl£¬Ê¹µÃl¡Í¦Á£¬l¡Î¦Â
ÉÏÃæÃüÌâÖУ¬ËùÓÐÕæÃüÌâµÄÐòºÅÊÇ£¨3£©£¨4£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªÆ½ÃæÏòÁ¿$\overrightarrow{a}$=£¨k£¬3£©£¬$\overrightarrow{b}$=£¨1£¬4£©£¬Èô$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬ÔòʵÊýk=-12£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªËæ»ú±äÁ¿X·þ´ÓÕý̬·Ö²¼N£¨1£¬¦Ò2£©£¬ÈôP£¨X£¾-2£©=0.9£¬ÔòP£¨1£¼X£¼4£©=£¨¡¡¡¡£©
A£®0.2B£®0.3C£®0.4D£®0.5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=lnx-ax£¨a£¾0£©£¬Éè$g£¨x£©=f£¨{\frac{2}{a}-x}£©$£®
£¨1£©ÅжϺ¯Êýh£¨x£©=f£¨x£©-g£¨x£©ÁãµãµÄ¸öÊý£¬²¢¸ø³öÖ¤Ã÷£»
£¨2£©Ê×ÏîΪmµÄÊýÁÐ{an}Âú×㣺¢Ùan+1+an¡Ù$\frac{2}{a}$£»¢Úf£¨an+1£©=g£¨an£©£®ÆäÖÐ0£¼m£¼$\frac{1}{a}£¬n¡Ê{N^*}$£®ÇóÖ¤£º¶ÔÓÚÈÎÒâµÄi£¬j¡ÊN*£¬¾ùÓÐai-aj£¼$\frac{1}{a}$-m£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖª$¦Á¡Ê£¨0£¬\frac{¦Ð}{2}£©£¬sin£¨\frac{¦Ð}{4}-¦Á£©sin£¨\frac{¦Ð}{4}+¦Á£©=-\frac{3}{10}$£¬Ôòtan¦Á=£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®2C£®$\sqrt{5}$D£®$\frac{{\sqrt{5}}}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸