·ÖÎö £¨1£©ÓÉÒÑÖªµÃb=1£¬ÓÖ$e=\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬a2=b2+c2=1+c2£¬µÃa£¬¼´¿ÉµÃµ½ËùÇóÍÖÔ²·½³Ì£»
£¨2£©ÉèÖ±Ïßl£ºx=my+t£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòM£¨t£¬0£©£¬
ÓÉ$\left\{\begin{array}{l}{x=my+t}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$µÃ£¨m2+4£©y2+2mty+t2-4=0£¬
¡÷=16m2-16t2+64£¾0£¬${y}_{1}{+y}_{2}=\frac{-2mt}{{m}^{2}+4}£¬{y}_{1}{y}_{2}=\frac{{t}^{2}-4}{{m}^{2}+4}$£¬
ÓÉkPA+kPB=2kPM£¬µÃ$\frac{{y}_{1}-2}{{x}_{1}-\frac{1}{2}}+\frac{{y}_{2}-2}{{x}_{2}-\frac{1}{2}}=2¡Á\frac{2}{\frac{1}{2}-t}$⇒$\frac{{y}_{1}{x}_{2}+{y}_{2}{x}_{1}-\frac{1}{2}£¨{y}_{1}+{y}_{2}£©-2£¨{x}_{1}+{x}_{2}£©+2}{{x}_{1}{x}_{2}-\frac{1}{2}£¨{x}_{1}+{x}_{2}£©+\frac{1}{4}}$=$\frac{8}{1-2t}$£®
µ±t=8ʱ£¬ÉÏʽºã³ÉÁ¢£¬
½â´ð ½â£º£¨1£©ÓÉÅ×ÎïÏßE£ºx2=4y£¬µÃF£¨0£¬1£©£¬¼´b=1£¬
ÓÖ$e=\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬a2=b2+c2=1+c2£¬
½âµÃ£ºa=2£¬c=$\sqrt{3}$£®
¡àÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨2£©ÉèÖ±Ïßl£ºx=my+t£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòM£¨t£¬0£©£¬
ÓÉ$\left\{\begin{array}{l}{x=my+t}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$µÃ£¨m2+4£©y2+2mty+t2-4=0£¬
¡÷=16m2-16t2+64£¾0
${y}_{1}{+y}_{2}=\frac{-2mt}{{m}^{2}+4}£¬{y}_{1}{y}_{2}=\frac{{t}^{2}-4}{{m}^{2}+4}$£¬
${x}_{1}+{x}_{2}=m£¨{y}_{1}+{y}_{2}£©+2t=\frac{-2{m}^{2}t}{{m}^{2}+4}+2t$=$\frac{8t}{{m}^{2}+4}$£¬x1x2=£¨my1+t£©£¨my2+t£©=$\frac{4{t}^{2}-4{m}^{2}}{{m}^{2}+4}$
y1x2+y2x1=2my1y2+t£¨y1+y2£©=$\frac{-8m}{{m}^{2}+4}$
ÓÉkPA+kPB=2kPM£¬µÃ$\frac{{y}_{1}-2}{{x}_{1}-\frac{1}{2}}+\frac{{y}_{2}-2}{{x}_{2}-\frac{1}{2}}=2¡Á\frac{2}{\frac{1}{2}-t}$⇒
$\frac{{y}_{1}{x}_{2}+{y}_{2}{x}_{1}-\frac{1}{2}£¨{y}_{1}+{y}_{2}£©-2£¨{x}_{1}+{x}_{2}£©+2}{{x}_{1}{x}_{2}-\frac{1}{2}£¨{x}_{1}+{x}_{2}£©+\frac{1}{4}}$=$\frac{8}{1-2t}$£®
⇒2t2+£¨4m-17£©t-32m+8=0⇒2t2-17t+8+m£¨4t-32£©=0
µ±t=8ʱ£¬2t2-17t+8+m£¨4t-32£©=0ºã³ÉÁ¢£¬
¹ÊMΪ¶¨µã£¨8£¬0£©£®
µãÆÀ ±¾Ì⿼²éÁËÅ×ÎïÏßÓëÍÖÔ²µÄ·½³Ì¡¢ÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÁ˶¨µãÎÊÌ⣬ÊôÓÚÖеµÌ⣬
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Èôa¡Íb£¬a¡Í¦Á£¬b?¦Á£¬Ôòb¡Î¦Á | B£® | Èôa¡Î¦Á£¬a¡Í¦Â£¬Ôò¦Á¡Í¦Â | ||
| C£® | Èôa¡Í¦Â£¬¦Á¡Í¦Â£¬Ôòa¡Î¦Á | D£® | Èôa¡Íb£¬a¡Í¦Á£¬b¡Í¦Â£¬Ôò¦Á¡Í¦Â |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Èôm¡Ín£¬m¡Í¦Á£¬n?¦Á£¬Ôòn¡Î¦Á | B£® | Èôm¡Í¦Â£¬¦Á¡Í¦Â£¬Ôòm¡Î¦Á»òm?¦Á | ||
| C£® | Èôm¡Î¦Á£¬¦Á¡Î¦Â£¬Ôòm¡Î¦Â | D£® | Èôm¡Ín£¬m¡Í¦Á£¬n¡Í¦Â£¬Ôò¦Á¡Í¦Â |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 0.2 | B£® | 0.3 | C£® | 0.4 | D£® | 0.5 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{2}$ | B£® | 2 | C£® | $\sqrt{5}$ | D£® | $\frac{{\sqrt{5}}}{5}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com