精英家教网 > 高中数学 > 题目详情
19.点P为△ABC边AB上任一点,则使S△PBC≤$\frac{1}{3}$S△ABC的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{5}{9}$D.$\frac{4}{9}$

分析 首先分析题目求在面积为S的△ABC的边AB上任取一点P,使S△PBC≤$\frac{1}{3}$S△ABC得到三角形高的关系,利用几何概型求概率.

解答 解:设P到BC的距离为h,
∵三角形ABC的面积为S,设BC边上的高为d,
因为两个三角形有共同的边BC,所以满足S△PBC≤$\frac{1}{3}$S△ABC 时,h≤$\frac{1}{3}$d,所以使S△PBC≤$\frac{1}{3}$S△ABC的概率为$\frac{{S}_{△PBC}}{{S}_{△ABC}}=\frac{\frac{1}{2}BC•h}{\frac{1}{2}BC•d}$=$\frac{1}{3}$;
故选:A.

点评 本题考查了几何概型的概率计算,利用线段长度比求概率是几何概型求概率的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.水池的容积是20m3,水池里的水龙头A和B的水流速度都是1m3/h,它们一昼夜(0-24h)内随机开启,则水池不溢水的概率$\frac{25}{72}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.据如表所示的样本数据,得到回归直线方程$\widehat{y}=\widehat{b}x+\widehat{a}$,其中$\widehat{a}$=9.1,则$\widehat{b}$=(  )
 x 2 4
 y26  3949  54
A.9.4B.9.5C.9.6D.9.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线y2=4x的焦点到双曲线${\frac{y^2}{3}}$-x2=1的渐近线的距离是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过(2,0)的函数$y=\frac{1}{x}$的切线斜率为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一个盒子里装有大小均匀的6个小球,其中有红色球4个,编号分别为1,2,3,4,白色球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何一个小球的可能性相同).
(1)求取出的3个小球中,含有编号为4的小球的概率;
(2)在取出的3个小球中,小球编号的最大值设为X,求随机变量X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.联考过后,夷陵中学要筹备高二期中考试分析会,要安排七校七个高二年级主任发言,其中襄阳五中与钟祥一中的主任安排在夷陵中学主任后面发言,则可安排不同的发言顺序共有1680(用数字作答)种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若随机变量X的分布列如表所示,则a2+b2的最小值为(  )
 X=i
 P(X=i) $\frac{1}{4}$ a $\frac{1}{4}$ b
A.$\frac{1}{24}$B.$\frac{1}{16}$C.$\frac{1}{8}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.己知复数z=(2-i)m2-$\frac{6m}{1-i}$-2(1+i),当实数m取什么值时,复数z是:
(1)虚数;
(2)纯虚数.

查看答案和解析>>

同步练习册答案