分析 (1)由条件利用三角形函数的周期,对称轴,对称中心,即可ω,φ.
(2)用五点法作函数y=Asin(ωx+φ)在一个周期[0,π]上的图象.
解答 解:(1)由题意得:$\left\{\begin{array}{l}{\frac{1}{2}T≥\frac{π}{3}}\\{\frac{2k+1}{4}•T=\frac{7π}{12}-\frac{π}{3}}\end{array}\right.$,即$\left\{\begin{array}{l}{\frac{π}{ω}≥\frac{π}{3}}\\{\frac{2k+1}{4}×\frac{π}{ω}=\frac{π}{4}}\end{array}\right.$,解得$\left\{\begin{array}{l}{ω≤3}\\{ω=4k+2}\end{array}\right.$
又ω>0,k∈Z,所以ω=2,
x=$\frac{2π}{3}$为对称轴,2×$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,所以φ=kπ-$\frac{π}{6}$,
又φ∈(-$\frac{π}{2}$,$\frac{π}{2}$),
∴φ=-$\frac{π}{6}$,
(2)由(1)可知f(x)=sin(2x-$\frac{π}{6}$),
由x∈[0,π],
所以2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{11π}{6}$],
列表:
| 2x-$\frac{π}{6}$ | -$\frac{π}{6}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | $\frac{11π}{6}$ |
| x | 0 | $\frac{π}{12}$ | $\frac{π}{3}$ | $\frac{7π}{12}$ | $\frac{5π}{6}$ | π |
| f(x) | -$\frac{1}{2}$ | 0 | 1 | 0 | -1 | $\frac{1}{2}$ |
点评 本题主要考查三角函数的周期,用五点法作函数y=Asin(ωx+φ)的图象,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $±\frac{7}{9}$ | B. | $±\frac{{4\sqrt{2}}}{7}$ | C. | $±2\sqrt{2}$ | D. | $±\frac{{\sqrt{2}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{2}$+$\frac{1}{2}$i | B. | -$\frac{3}{2}$-$\frac{1}{2}$i | C. | $\frac{3}{2}$-$\frac{1}{2}$i | D. | $\frac{3}{2}$+$\frac{1}{2}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3π | B. | 4π | C. | 5π | D. | 8π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com