精英家教网 > 高中数学 > 题目详情
14.函数y=-sin(ωx+φ)(ω>0,φ∈(-$\frac{π}{2}$,$\frac{π}{2}$))的一条对称轴为x=$\frac{π}{3}$,一个对称中心为($\frac{7π}{12}$,0),在区间[0,$\frac{π}{3}$]上单调.
(1)求ω,φ的值;
(2)用描点法作出y=sin(ωx+φ)在[0,π]上的图象.

分析 (1)由条件利用三角形函数的周期,对称轴,对称中心,即可ω,φ.
(2)用五点法作函数y=Asin(ωx+φ)在一个周期[0,π]上的图象.

解答 解:(1)由题意得:$\left\{\begin{array}{l}{\frac{1}{2}T≥\frac{π}{3}}\\{\frac{2k+1}{4}•T=\frac{7π}{12}-\frac{π}{3}}\end{array}\right.$,即$\left\{\begin{array}{l}{\frac{π}{ω}≥\frac{π}{3}}\\{\frac{2k+1}{4}×\frac{π}{ω}=\frac{π}{4}}\end{array}\right.$,解得$\left\{\begin{array}{l}{ω≤3}\\{ω=4k+2}\end{array}\right.$
又ω>0,k∈Z,所以ω=2,
x=$\frac{2π}{3}$为对称轴,2×$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,所以φ=kπ-$\frac{π}{6}$,
又φ∈(-$\frac{π}{2}$,$\frac{π}{2}$),
∴φ=-$\frac{π}{6}$,
(2)由(1)可知f(x)=sin(2x-$\frac{π}{6}$),
由x∈[0,π],
所以2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{11π}{6}$],
列表:

 2x-$\frac{π}{6}$-$\frac{π}{6}$$\frac{π}{2}$π $\frac{3π}{2}$$\frac{11π}{6}$ 
 x 0$\frac{π}{12}$ $\frac{π}{3}$ $\frac{7π}{12}$ $\frac{5π}{6}$  π
 f(x)-$\frac{1}{2}$ 01 0-1 $\frac{1}{2}$
画图:

点评 本题主要考查三角函数的周期,用五点法作函数y=Asin(ωx+φ)的图象,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若$\sqrt{3}$sinx+cosx=$\frac{2}{3}$,则tan(x+$\frac{7π}{6}}$)=(  )
A.$±\frac{7}{9}$B.$±\frac{{4\sqrt{2}}}{7}$C.$±2\sqrt{2}$D.$±\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算:
(1)(-$\frac{7}{8}$)0+($\frac{1}{8}$)${\;}^{\frac{1}{3}}$+$\root{4}{(3-\sqrt{10})^{4}}$;
(2)5${\;}^{lo{g}_{5}2}$+lg22+lg5•lg2+lg5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数$\frac{2+i}{1+i}$的共扼复数是(  )
A.-$\frac{3}{2}$+$\frac{1}{2}$iB.-$\frac{3}{2}$-$\frac{1}{2}$iC.$\frac{3}{2}$-$\frac{1}{2}$iD.$\frac{3}{2}$+$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知三棱锥P-ABC中,PA=AB=AC=1,PA⊥面ABC,∠BAC=$\frac{2π}{3}$,则三棱锥P-ABC的外接球的表面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.$\underset{lim}{n→∞}\frac{4{n}^{2}-1}{2{n}^{2}+3n}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题中,正确命题的个数是(  )
①若2b=a+c,则a,b,c成等差数列;
②“a,b,c成等比数列”的充要条件是“b2=ac”;
③若数列{an2}是等比数列,则数列{an}也是等比数列;
④若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设α:m+1≤x≤2m+7(m∈R),β:1≤x≤3,若α是β的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.给出如下四个命题:
①若“p∨q”为真命题,则p、q均为真命题;
②命题“?x∈[0,+∞),x3+x≥0”的否定是“?x∈[0,+∞),x03+x0<0”;
③命题“若x=4且y=2,则x+y=6”的否命题为真命题;
④在△ABC中,“A>30°”是“sinA>$\frac{1}{2}$”的充要条件.
其中正确命题的序号是②.

查看答案和解析>>

同步练习册答案