精英家教网 > 高中数学 > 题目详情
2.复数$\frac{2+i}{1+i}$的共扼复数是(  )
A.-$\frac{3}{2}$+$\frac{1}{2}$iB.-$\frac{3}{2}$-$\frac{1}{2}$iC.$\frac{3}{2}$-$\frac{1}{2}$iD.$\frac{3}{2}$+$\frac{1}{2}$i

分析 利用复数的运算法则、共轭复数的定义即可得出.

解答 解:复数$\frac{2+i}{1+i}$=$\frac{(2+i)(1-i)}{(1+i)(1-i)}$=$\frac{3-i}{2}$的共扼复数是$\frac{3}{2}$+$\frac{1}{2}$i.
故选:D.

点评 本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知{an}是等比数列,a2=2且公比q>0,-2,a1,a3成等差数列.
(Ⅰ)求q的值;
(Ⅱ)已知bn=anan+2-λnan+1(n=1,2,3,…),设Sn是数列{bn}的前n项和.若S1>S2,且Sk<Sk+1(k=2,3,4,…),求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}(n∈N*)是公差不为0的等差数列,若a1=1,且a2,a4,a8成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知tanα=-$\frac{4}{3}$,则tan(α-$\frac{π}{4}$)=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=rcosθ+2\\ y=rsinθ+2\end{array}$(θ为参数,r>0).以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为$\sqrt{2}$ρsin(θ+$\frac{π}{4}$)+1=0.
(1)求圆C的圆心的极坐标;
(2)当圆C与直线l有公共点时,求r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)是R上的奇函数,且满足f(x+2)=-f(x),当x∈[0,1]时,f(x)=x,则方程f(x)=$\frac{2x-8}{x+1}$在(0,+∞)解的个数是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数y=-sin(ωx+φ)(ω>0,φ∈(-$\frac{π}{2}$,$\frac{π}{2}$))的一条对称轴为x=$\frac{π}{3}$,一个对称中心为($\frac{7π}{12}$,0),在区间[0,$\frac{π}{3}$]上单调.
(1)求ω,φ的值;
(2)用描点法作出y=sin(ωx+φ)在[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.用∈或∉填空:0∉∅.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\sqrt{lgx}$+lg(5-3x)的定义域是[1,$\frac{5}{3}$).

查看答案和解析>>

同步练习册答案