精英家教网 > 高中数学 > 题目详情
12.已知{an}是等比数列,a2=2且公比q>0,-2,a1,a3成等差数列.
(Ⅰ)求q的值;
(Ⅱ)已知bn=anan+2-λnan+1(n=1,2,3,…),设Sn是数列{bn}的前n项和.若S1>S2,且Sk<Sk+1(k=2,3,4,…),求实数λ的取值范围.

分析 (Ⅰ)由-2,a1,a3成等差数列,可知2×$\frac{{a}_{2}}{q}$=(-2)+a2q,由a2=2,代入求得q的值;
(Ⅱ)由(Ⅰ)可知:an=2n-1,bn=anan+2-λnan+1=4n-λn2n,由S1>S2,代入求得λ>2,由Sk<Sk+1(k=2,3,4,…)恒成立,可知λ<$\frac{{2}^{k+1}}{k+1}$,构造数列ck=$\frac{{2}^{k+1}}{k+1}$,作差法求得数列{cn}的最小值,即可求得λ的取值范围.

解答 解:(Ⅰ)由-2,a1,a3成等差数列,
∴2a1=-2+a3
∵{an}是等比数列,a2=2,q>0,
∴a3=2q,a1=$\frac{{a}_{2}}{q}$=$\frac{2}{q}$,
代入整理得:q2-q-2=0,解得:q=2,q=-1(舍去),
∴q=2,
(Ⅱ)由(Ⅰ)an=2n-1
bn=anan+2-λnan+1=4n-λn2n
由S1>S2
∴S2-S1<0,即b2<0,
∴42-2λ•22<0,解得:λ>2,
Sk<Sk+1(k=2,3,4,…)恒成立,
bn=anan+2-λnan+1,即λ<$\frac{{2}^{k+1}}{k+1}$,
设ck=$\frac{{2}^{k+1}}{k+1}$(k≥2,k∈N*),只需要λ<(ckmin(k≥2,k∈N*)即可,
∵$\frac{{c}_{k+1}}{{c}_{k}}$=$\frac{{2}^{k+2}}{k+2}$×$\frac{{2}^{k+1}}{k+1}$=$\frac{k+(k+2)}{k+2}$>1,
∴数列{cn}在k≥2且k∈N*上单调递增,
∴(ckmin=c2=$\frac{{2}^{3}}{3}$=$\frac{8}{3}$,
∴λ<$\frac{8}{3}$,
∵λ>2,
∴λ∈(2,$\frac{8}{3}$).

点评 本题考查等差数列的性质,等比数列通项公式,考查数列与不等式结合,作差法求数列的单调性即最值,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.直线y=kx+1与圆x2+y2=1相交于A,B两点,且|AB|=$\sqrt{3}$,则实数k的值等于(  )
A.$\sqrt{3}$B.1C.$\sqrt{3}$或-$\sqrt{3}$D.1或-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)化简:$\frac{{({2{a^{\frac{2}{3}}}{b^{\frac{1}{2}}}})({-6\sqrt{a}\root{3}{b}})}}{{3{a^{\frac{1}{6}}}{b^{\frac{5}{6}}}}}$;
(2)求值:log535+2log0.5$\sqrt{2}$-log5$\frac{1}{50}$-log514+10lg3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{a}$=(-1,x),$\overrightarrow{b}$=(-2,4).若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x的值为(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,cosA=$\frac{13}{14}$,7a=3b,则B=$\frac{π}{3}$或$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2$\sqrt{2}$,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若$\sqrt{3}$sinx+cosx=$\frac{2}{3}$,则tan(x+$\frac{7π}{6}}$)=(  )
A.$±\frac{7}{9}$B.$±\frac{{4\sqrt{2}}}{7}$C.$±2\sqrt{2}$D.$±\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=asinx-$\sqrt{3}$cosx(a∈R)的图象经过点($\frac{π}{3}$,0).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若x∈[$\frac{π}{2}$,$\frac{3π}{2}$],求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数$\frac{2+i}{1+i}$的共扼复数是(  )
A.-$\frac{3}{2}$+$\frac{1}{2}$iB.-$\frac{3}{2}$-$\frac{1}{2}$iC.$\frac{3}{2}$-$\frac{1}{2}$iD.$\frac{3}{2}$+$\frac{1}{2}$i

查看答案和解析>>

同步练习册答案