精英家教网 > 高中数学 > 题目详情
3.已知集合P={x∈R|x2+ax+4=0}
(1)若P={2},求实数a的值;
(2)若{1}?P,求实数a的值.

分析 利用条件,转化为方程的解问题,即可求解.

解答 解:(1)P={2},则2是x2+ax+4=0的解,且有等根,所以22+2a+4=0,所以a=-4;
(2){1}?P,则1是x2+ax+4=0的解,所以12+a+4=0,所以a=-5,P={1,4},满足题意

点评 本题考查集合的含义与关系,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.对任意锐角△ABC,均有sinA+sinB+sinC>M成立,则实数M的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知θ,x为实数,集合M={θ|(1+cos2θ)x2-x≥(x+2)(cos2θ+2)}=(-∞,+∞),则x的取值范围是(-∞,1-$\sqrt{3}$]∪[1+$\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若$\frac{1}{2}$∈{x|x2-ax-$\frac{5}{2}$=0},则集合{x|x2-$\frac{19}{2}$x-a=0}中所有元素之积为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列函数的定义域:
(1)f(x)=$\frac{3x}{x-4}$;
(2)f(x)=$\sqrt{{x}^{2}}$;
(3)f(x)=$\frac{6}{{x}^{2}-3x+2}$;
(4)f(x)=$\frac{\sqrt{4-x}}{x-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.集合A={-3,x2,x+1},B={x-3,2x-1,x2+1},若A∩B={-3},求A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若集合{x|x2+ax+1≥0}=R,则实数a的取值范围是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设A={(x,y)|2x-y=1},B={(x,y)|2x+y=0},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x2-ax|-2,且函数f(x+2)是偶函数.
(1)求实数a的值;
(2)设函数y=g(x),集合M={x|g(x)-x=0},N={x|g(g(x))-x=0}.
①证明:M⊆N;
②如果g(x)=f(|x|),集合P={x|g(x)-x=0,且|x|≤2},那么集合P中的元素个数为2.

查看答案和解析>>

同步练习册答案