分析 (1)由a5-a2=3d=6,求得d=2,a2=a1+d=-1,a1=-3,由等差数列通项公式则an=2n-5;
(2)bn=an+2n=(2n-5)+2n,采用分组求和,根据等比数列及等差数列前n项和公式,即可求得{bn}前n项和Sn.
解答 解:(1)等差数列{an}公差为d,a5-a2=3d=6,即d=2.
a2=a1+d=-1,
解得:a1=-3,
∴an=a1+2(n-1)=2n-5,
数列{an}的通项an,an=2n-5;
(2)由bn=an+2n=(2n-5)+2n,
则{bn}前n项和Sn,Sn=b1+b2+b3+…+bn,
=-3+2+(-1)+22+1+23+…+(2n-5)+2n,
=[-3+(-1)+1+…+(2n-5)]+2+22+23+…+2n,
=$\frac{(-3+2n+5)n}{2}$+$\frac{2(1-{2}^{n})}{1-2}$,
=n2-4n+2n+1-2,
{bn}前n项和Sn,Sn=n2-4n+2n+1-2.
点评 本题考查等差数列的通项公式,等差数列及等比数列前n项和公式的求法,考查分组求和,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,${2^{x_0}}$>0 | B. | ?x0∈R,${2^{x_0}}$<0 | C. | ?x∈R,2x≤0 | D. | ?x0∈R,${2^{x_0}}$≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | 3$\sqrt{3}$ | C. | -3$\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{15}{11}$ | C. | -1 | D. | $\frac{17}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com