精英家教网 > 高中数学 > 题目详情
19.要分配甲、乙、丙、丁、戊5名同学去参加三项不同的教学活动,其中活动一和活动二各要2人,活动三要1人,每人只能参加一项活动,且甲,乙两人不能参加同一活动,则一共有24_种不同的分配方法.

分析 间接法:先求出活动一和活动二各要2人,活动共有三要1人的方法种数,去掉甲,乙两人参加同一活的方法种数即可.

解答 解:由题意把甲、乙、丙、丁、戊5人分配去参加三项不同的活动,
其中活动一和活动二各要2人,活动三要1人共有${C}_{5}^{2}•{C}_{3}^{2}$=30种方法,
其中甲,乙两人参加同一活动${C}_{3}^{2}$+${C}_{3}^{2}$=6种方法,
故符合题意得方法共30-6=24种,
故答案为:24.

点评 本题考查排列组合的应用,间接法是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在△ABC中,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,O为△ABC的重心,则$\overrightarrow{OA}$可用$\overrightarrow{a}$,$\overrightarrow{b}$表示为$-\frac{1}{3}$($\overrightarrow{a}$+$\overrightarrow{b}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知i为虚数单位,若$\frac{1+i}{z}=1-2i$,则复数z所对应的点所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个平行四边形的三个顶点的坐标为(-1,2),(3,4),(4,-2),点(x,y)在这个平行四边形的内部或边上,则z=2x-5y的最大值与最小值的和等于(  )
A.8B.6C.-12D.-24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法中正确的是(  )
A.若命题p:?x∈R有x2>0,则¬p:?x∈R有x2≤0
B.若p是q的充分不必要条件,则¬p是¬q的必要不充分条件
C.若命题p:$\frac{1}{x-1}$>0,则¬p:$\frac{1}{x-1}$≤0
D.方程ax2+x+a=0有唯一解的充要条件是a=±$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD=4,AB=CD=$\sqrt{10}$,∠DBC=45°
(1)证明:BD⊥平面PAC;
(2)若二面角A-PC-D的大小为60°,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{m}$=(2sinωx,cos2ωx-sin2ωx),$\overrightarrow{n}$=($\sqrt{3}$cosωx,1)其中ω>0,x∈R,若函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的最小正周期为π.
(1)求ω的值及f(x)的对称轴方程;
(2)在△ABC中,角A,B,C的对边为a,b,c,若f(B)=-2,BC=$\sqrt{3}$,2bcosA=$\sqrt{3}$(ccosA+acosC),求$\overrightarrow{BA}$•$\overrightarrow{BC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若不等式kx2-2x+1-k<0对满足-2≤k≤2的所有k都成立,则x的取值范围是($\frac{-1+\sqrt{7}}{2}$,$\frac{1+\sqrt{3}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,直三棱柱ABC-A1B1C1的底面是边长为A的正三角形,点M在边BC上,△AMC1是以M为直角顶点的等腰直角三角形.
(1)求证:直线A1B∥平面AMC1
(2)求三棱锥C1-AB1M的高.

查看答案和解析>>

同步练习册答案