精英家教网 > 高中数学 > 题目详情
8.若不等式kx2-2x+1-k<0对满足-2≤k≤2的所有k都成立,则x的取值范围是($\frac{-1+\sqrt{7}}{2}$,$\frac{1+\sqrt{3}}{2}$).

分析 构造函数f(k)=kx2-2x+1-k,把f(k)看作关于k的一次函数,
根据题意列出不等式组$\left\{\begin{array}{l}{f(-2)<0}\\{f(2)<0}\end{array}\right.$,求出x的取值范围即可.

解答 解:设f(k)=kx2-2x+1-k=k(x2-1)-2x+1,
f(k)可看作关于k的一次函数,
∵不等式kx2-2x+1-k<0对任意k∈[-2,2]时均成立,
∴$\left\{\begin{array}{l}{f(-2)<0}\\{f(2)<0}\end{array}\right.$,
即$\left\{\begin{array}{l}{-{2x}^{2}-2x+3<0}\\{{2x}^{2}-2x-1<0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x<\frac{-1-\sqrt{7}}{2},或x>\frac{-1+\sqrt{7}}{2}}\\{\frac{1-\sqrt{3}}{2}<x<\frac{1+\sqrt{3}}{2}}\end{array}\right.$,
即$\frac{-1+\sqrt{7}}{2}$<x<$\frac{1+\sqrt{3}}{2}$;
∴x的取值范围为($\frac{-1+\sqrt{7}}{2}$,$\frac{1+\sqrt{3}}{2}$).
故答案为:($\frac{-1+\sqrt{7}}{2}$,$\frac{1+\sqrt{3}}{2}$).

点评 本题考查了函数的性质与应用问题,也考查了不等式组的解法与应用问题,考查了等价转化问题以及推理应用与计算能力,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(下面的临界值表供参考)
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,
求3名幸运选手中至少有一人在20~30岁之间的概率.
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.要分配甲、乙、丙、丁、戊5名同学去参加三项不同的教学活动,其中活动一和活动二各要2人,活动三要1人,每人只能参加一项活动,且甲,乙两人不能参加同一活动,则一共有24_种不同的分配方法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图是y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在区间[-$\frac{π}{6}$,$\frac{5π}{6}$]上的图象为了得到y=sin2x的图象,只需要将此图象(  )
A.向左平移$\frac{π}{3}$个单位B.向右平移$\frac{π}{3}$个单位
C.向左平移$\frac{π}{6}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如果执行如图所示的框图,那么输出的S等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线C1:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1({a>0,b>0})$的离心率为2,若抛物线C2:y2=2px(p>0)的焦点到双曲线C1的渐近线的距离是2,则抛物线C2的方程是(  )
A.y2=8xB.y2=$\frac{{16\sqrt{3}}}{3}$xC.y2=$\frac{{8\sqrt{3}}}{3}$xD.y2=16x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在小语种自主招生考试中,某学校获得5个推荐名额,其中韩语2名,日语2名,俄语1名.并且日语和韩语都要求必须有女生参加.学校通过选拔定下3女2男共5个推荐对象,则不同的推荐方法共有24种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{e}{x}$-lnx,g(x)=ex-1+a-lnx,其中e=2.71828…,a∈R.
(1)求f(x)的零点;
(2)求g(x)的极值;
(3)如果s,t,r满足|s-r|<|t-r|,那么称s比t更靠近r.当a≥2且x≥1时,试比较$\frac{e}{x}$和ex-1+a哪个更靠近lnx,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.三棱锥P-ABC中,已知∠APC=∠BPC=∠APB=$\frac{π}{3}$,点M是△ABC的重心,且$\overrightarrow{PA}$•$\overrightarrow{PB}$+$\overrightarrow{PB}$$•\overrightarrow{PC}$+$\overrightarrow{PC}$$•\overrightarrow{PA}$=9,则|$\overrightarrow{PM}$|的最小值为(  )
A.2$\sqrt{2}$B.$\sqrt{6}$C.$\frac{4\sqrt{3}}{3}$D.2

查看答案和解析>>

同步练习册答案