精英家教网 > 高中数学 > 题目详情
9.设p:实数x满足x2-4ax+3a2<0(其中a≠0),q:实数x满足$\frac{x-3}{x-2}<0$
(1)若a=1,p且q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

分析 (1)当a=1,对于p:x2-4x+3<0,利用一元二次不等式的解法可得实数x的取值范围.由$\frac{x-3}{x-2}<0$,化为(x-2)(x-3)<0,解得实数x的取值范围.若p∧q为真,则p真且q真,即可得出.
(2)设A={x|p(x)},B={x|q(x)}=(2,3),由p是q的必要不充分条件,可得$B\begin{array}{l}?\\≠\end{array}A$,对a分类讨论,即可得出.

解答 解:(1)当a=1,对于p:x2-4x+3<0,解得1<x<3,即p为真时实数x的取值范围是1<x<3.
由$\frac{x-3}{x-2}<0$,化为(x-2)(x-3)<0,解得2<x<3,因此q为真时实数x的取值范围是2<x<3.
若p∧q为真,则p真且q真,∴$\left\{\begin{array}{l}{1<x<3}\\{2<x<3}\end{array}\right.$,解得2<x<3,
∴实数x的取值范围是(2,3).
(2)设A={x|p(x)},B={x|q(x)}=(2,3),
∵p是q的必要不充分条件,∴$B\begin{array}{l}?\\≠\end{array}A$,
由x2-4ax+3a2<0得(x-3a)(x-a)<0,
当a>0时,A=(a,3a),有$\left\{{\begin{array}{l}{a≤2}\\{3a≥3}\end{array}}\right.$,解得1≤a≤2;
当a<0时,A=(3a,a),显然A∩B=∅,不合题意.
∴实数a的取值范围是1≤a≤2.

点评 本题考查了不等式的解法、简易逻辑的判定方法、集合之间的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.极坐标方程5ρ2cos2θ+ρ2-24=0所表示的曲线的焦距为$2\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出四个关系式中:①∅={0};②0∈{(0,0)};③0∈{0};④0∉N*.其中表述正确的是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知一条光线从点(-2,-3)射出,经y轴反射后与圆x2+y2+6x-4y+12=0相切,求反射光线所在直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系xOy中,已知圆C:x2+y2-(6-2m)x-4my+5m2-6m=0,直线l经过点(1,1),若对任意的实数m,直线l被圆C截得的弦长都是定值,则直线l的方程为2x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=-lnx,g(x)=\frac{1}{x}-ax$,若在点(2,f(2))处的切线与g(x)在点(2,g(2))处的切线l平行.
(1)求直线l的方程;
(2)关于x的方程$f(x)+xg(x)=-\frac{3}{2}x+1-b$在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若执行如图的程序框图,输出S的值为(x+$\frac{1}{\sqrt{x}}$)3展开式中的常数项,则判断框中应填入的条件是(  )
A.k<9?B.k<8?C.k<7?D.k<6?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知平面区域Ω={(x,y)|0≤x≤1,0≤y≤$\frac{1}{2}$},曲线C:y=$\frac{1}{{x}^{2}+3x+2}$,点A为区域Ω内任意一点,则点A落在曲线C下方的概率是(  )
A.ln3-ln2B.2ln3-2ln2C.2ln2-ln3D.4ln2-2ln3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.为了调查市民对某活动的认可程度,研究人员对其所在地区年龄在10~60岁间的n位市民作出调查,并将统计结果绘制成频率分布直方图如图所示,若被调查的年龄在20~30岁间的市民有480人,则可估计被调查的年龄在40~50岁间的市民有320人.

查看答案和解析>>

同步练习册答案