精英家教网 > 高中数学 > 题目详情
13.求下列函数的单调区间:
(1)y=1-sinx
(2)y=sin$\frac{x}{2}$
(3)y=sin(2x-$\frac{π}{3}$)
(4)y=1+sin($\frac{π}{6}$-$\frac{1}{2}$x)

分析 根据正弦函数t=sinx的单调增和单调减区间,求出对应的正弦型函数的单调性与单调区间即可.

解答 解:(1)正弦函数t=sinx的单调增区间是[-$\frac{π}{2}$+2kπ,$\frac{π}{2}$+2kπ],k∈Z;
单调减区间是[$\frac{π}{2}$+2kπ,$\frac{3π}{2}$+2kπ],k∈Z;
∴函数y=1-sinx的单调减区间是[-$\frac{π}{2}$+2kπ,$\frac{π}{2}$+2kπ],k∈Z;
单调增区间是[$\frac{π}{2}$+2kπ,$\frac{3π}{2}$+2kπ],k∈Z;
(2)令-$\frac{π}{2}$+2kπ≤$\frac{x}{2}$≤$\frac{π}{2}$+2kπ,k∈Z;
解得-π+4kπ≤x≤π+4kπ,k∈Z;
∴y=sin$\frac{x}{2}$的单调增区间是[-π+4kπ,π+4kπ],k∈Z;
同理,函数y的单调减区间是[π+4kπ,3π+4kπ],k∈Z;
(3)令-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,k∈Z;
解得-$\frac{π}{12}$+kπ≤x≤$\frac{5π}{12}$+kπ,k∈Z;
∴y=sin(2x-$\frac{π}{3}$)的单调增区间是[-$\frac{π}{12}$+kπ,$\frac{5π}{12}$+kπ],k∈Z;
同理,函数y的单调减区间是[$\frac{5π}{12}$+kπ,$\frac{11π}{12}$+kπ],k∈Z;
(4)y=1+sin($\frac{π}{6}$-$\frac{1}{2}$x)=1-sin($\frac{1}{2}$x-$\frac{π}{6}$)
令-$\frac{π}{2}$+2kπ≤$\frac{x}{2}$-$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z;
解得-$\frac{2π}{3}$+4kπ≤x≤$\frac{4π}{3}$+4kπ,k∈Z;
∴y=1+sin($\frac{π}{6}$-$\frac{1}{2}$x)的单调减区间是[-$\frac{2π}{3}$+4kπ,$\frac{4π}{3}$+4kπ],k∈Z;
同理,函数y的单调增区间是[$\frac{4π}{3}$+4kπ,$\frac{10π}{3}$+4kπ],k∈Z.

点评 本题考查了利用正弦函数的单调性求对应正弦型函数的单调性与单调区间的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知a=$\frac{1}{π}\int_{-2}^2$($\sqrt{4-{x^2}}$-ex)dx,若(1-ax)2017=b0+b1x+b2x2+…+b2017x2017(x∈R),则$\frac{b_1}{2}+\frac{b_2}{2^2}+…+\frac{{{b_{2017}}}}{{{2^{2017}}}}$的值为(  )
A.0B.-1C.1D.e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各组向量互相垂直的是(  )
A.$\overrightarrow{a}$=(1,2,-2),$\overrightarrow{b}$=(-2,-4,1)B.$\overrightarrow{a}$=(2,4,5),$\overrightarrow{b}$=(0,0,0)
C.$\overrightarrow{a}$=(1,2,$\frac{1}{2}$),$\overrightarrow{b}$=($\frac{1}{2}$,-$\frac{1}{2}$,1)D.$\overrightarrow{a}$=(2,4,5),$\overrightarrow{b}$=(-2,-4,-5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线ax+y-5=0截圆C:x2+y2-4x-2y+1=0的弦长为4,则a=(  )
A.-2B.-3C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知e为自然对数的底数,若对任意的x1∈[1,e],总存在唯一的x2∈[-1,1],使得a-lnx1=x22ex2成立,则实数a的取值范围是(  )
A.[1,e]B.[1+$\frac{1}{e}$,e]C.(1,e]D.(1+$\frac{1}{e}$,e]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=x2+bx-3(b∈R)的零点个数是(  )
A.0B.1C.2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=1,an+1=2an+1.
(1)求证:数列{an+1}是等比数列;
(2)求数列{an}的通项公式an和前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.不等式x+y-1>0表示的区域在直线x+y-1=0的(  )
A.左上方B.左下方C.右上方D.右下方

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.现有1名男同学和2名女同学参加演讲比赛,共有2道演讲备选题目,若每位选手从中有放回地随机选出一道题进行演讲,以下说法不正确的是(  )
A.三人都抽到同一题的概率为$\frac{1}{4}$
B.只有两名女同学抽到同一题的概率为$\frac{1}{4}$
C.其中恰有一男一女抽到同一道题的概率为$\frac{1}{2}$
D.至少有两名同学抽到同一题的概率为$\frac{3}{4}$

查看答案和解析>>

同步练习册答案