精英家教网 > 高中数学 > 题目详情
8.已知e为自然对数的底数,若对任意的x1∈[1,e],总存在唯一的x2∈[-1,1],使得a-lnx1=x22ex2成立,则实数a的取值范围是(  )
A.[1,e]B.[1+$\frac{1}{e}$,e]C.(1,e]D.(1+$\frac{1}{e}$,e]

分析 由对数函数的单调性求得f(x)的取值范围,求导,利用函数的单调性求得g(x)的值域,由题意可知:[a-1,a]⊆($\frac{1}{e}$,e],即可求得a的取值范围.

解答 解:设f(x)=a-lnx,x∈[1,e]单调递减,
∴f(x)max=a,f(x)min=a-1,
∴f(x)∈[a-1,a],
设g(x)=x2ex
∵对任意的x1∈[1,e],总存在唯一的x2∈[-1,1],使得a-lnx1=x22ex2成立,
∴[a-1,a]是g(x)的不含极值点的单值区间的子集,
∵g′(x)=x(2+x)ex,∴x∈[-1,0)时,g′(x)<0,g(x)=x2ex是减函数,
当x∈(0,1],g′(x)>0,g(x)=x2ex是增函数,
∵g(-1)=$\frac{1}{e}$<e=g(1),
∴[a-1,a]⊆($\frac{1}{e}$,e],
∴$\left\{\begin{array}{l}{a-1>\frac{1}{e}}\\{a≤e}\end{array}\right.$,解得:$\frac{1}{e}$+1<a<e.
故选D.

点评 本题考查导数的综合应用,考查利用到求函数单调性及值域,考查集合之间的关系,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知A(2,0),B(3,$-\sqrt{3}$),直线 l∥AB,则直线l的倾斜角为(  )
A.135°B.120°C.60°D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.今年冬天流感盛行,据医务室统计,北校近30天每天因病请假人数依次构成数列{an},已知a1=1,a2=2,且an+2-an=1+(-1)n (n∈N*),则这30天因病请假的人数共有255人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=-x2+ax-4lnx-a+1(a∈R).
(1)若$f({\frac{1}{2}})+f(2)=0$,求a的值;
(2)若存在${x_0}∈({1,\frac{{3+\sqrt{5}}}{2}})$,使函数f(x)的图象在点(x0,f(x0))和点$({\frac{1}{{{x_0},}},f({\frac{1}{x_0}})})$处的切线互相垂直,求a的取值范围;
(3)若函数f(x)在区间(1,+∞)上有两个极值点,则是否存在实数m,使f(x)<m对任意的x∈[1,+∞)恒成立?若存在,求出m的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求经过直线l1:3x+4y+5=0与l2:2x-3y-8=0的交点M,且满足下列条件的直线方程.
(1)经过原点;
(2)与直线2x+y+5=0平行;
(3)与直线2x+y+5=0垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的单调区间:
(1)y=1-sinx
(2)y=sin$\frac{x}{2}$
(3)y=sin(2x-$\frac{π}{3}$)
(4)y=1+sin($\frac{π}{6}$-$\frac{1}{2}$x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在等差数列{an}中,a3+a6+a9=54,设数列{an}的前n项和为Sn,则S11=(  )
A.18B.99C.198D.297

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知p:x2-8x-20>0,q:[x-(1-m)][x-(1+m)]>0(m>0),若p是q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知A,B分别为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)在x轴正半轴,y轴正半轴上的顶点,原点O到直线AB的距离为$\frac{{2\sqrt{21}}}{7}$,且|AB|=$\sqrt{7}$.
(1)求椭圆C的离心率;
(2)直线l:y=kx+m(-1≤k≤2)与圆x2+y2=2相切,并与椭圆C交于M,N两点,若|MN|=$\frac{{12\sqrt{2}}}{7}$,求k的值.

查看答案和解析>>

同步练习册答案