精英家教网 > 高中数学 > 题目详情
11.直线y=3x-1与直线x+ay+2=0垂直,求实数a的值.

分析 两直线垂直,x与y的系数乘积之和为0,由此能求出结果.

解答 解:∵直线y=3x-1与直线x+ay+2=0垂直,
∴3-a=0,
解得a=3,
∴实数a的值是3.

点评 本题考查实数值的求法,是基础题,解题时要注意两直线垂直的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知关于x的方程x2+(m-17)x+(m-2)=0的两个根都是正实数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.“光盘行动”倡导厉行节约,反对铺张浪费,带动大家珍惜粮食,吃光盘子中的食物,得到从中央到民众的支持,为了解某地响应“光盘行动”的实际情况,某校几位同学组成研究性学习小组,从某社区[25,55]岁的人群中随机抽取n人进行了一次调查,得到如下统计表:
组数分组频数频率“光盘族”占本组比例
第1组[25,30)500.0530%
第2组[30,35)1000.1030%
第3组[35,40)1500.1540%
第4组[40,45)2000.2050%
第5组[45,50)ab65%
第6组[50,55)2000.2060%
(Ⅰ)求a,b的值,并估计本社区[25,55]岁的人群中“光盘族”所占比例;
(Ⅱ)从年龄段在[35,40)与[40,45)的“光盘族”中,采用分层抽样方法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队.
(i)已知选取2人中1人来自[35,40)中的前提下,求另一人来自年龄段[40,45)中的概率;
(ii)求2名领队的年龄之和的期望值(每个年龄段以中间值计算).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知关于x的不等式2x2+(3a-7)x+3+a-2a2>0的解集为A.
(1)若0∈A,求a的取值集合;
(2)在(1)中,若a∈Z,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,几何体ABC-A1B1C1中,平面ABC∥平面A1B1C1,平面ACC1A1为矩形,平面ACC1A1⊥平面BCC1B1,已知AC=3,BC=AA1=4,BB1=5,B1C1=1
(Ⅰ)若平面AA1B∩平面BCC1B1=l,求证:l∥CC1
(Ⅱ)求钝二面角A-A1B-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求曲线y=log2x与曲线y=log2(4-x)以及x轴所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l:$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,α为l的倾斜角,且0<α<π)与曲线C:$\left\{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)相交于A、B两点,点F的坐标为(1,0).
(1)求△ABF的周长;
(2)若点E(-1,0)恰为线段AB的三等分点,求△ABF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线C1:x2+y2=1经过伸缩变换$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$后得到曲线C2
(1)求曲线C2的方程;
(2)求曲线C2上所有点(x′,y′)中(x′-2)(y′-3)的最大值和最小值及对应的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)在(0,+∞)内可导,且f(ex)=x+ex,则f′(1)=2;若f(x)=x2+3xf′(2),则f′(2)=-2.

查看答案和解析>>

同步练习册答案