精英家教网 > 高中数学 > 题目详情

【题目】(本题满分12分) 已知椭圆的左焦点及点,原点到直线的距离为

1)求椭圆的离心率

2)若点关于直线的对称点在圆上,求椭圆的方程及点的坐标.

【答案】1;(2

【解析】

试题分析:(1)在利用三角形面积相等可建立的等式关系,求得的值;(2)可设的点的坐标利用对称性求的点的坐标代入圆的方程中可求得的值,进而可得椭圆的方程和的坐标.

试题解析::由点F(ae,0),点A(0b),及得直线FA的方程为

原点O到直线FA的距离为

.解得

(2):设椭圆C的左焦点F关于直线l2xy0的对称点为P(x0y0)

则有

解得

∵P在圆x2y24上,

∴a28b2(1e2)a24

故椭圆C的方程为,点P的坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动点到定点的距离之和为.

(1)求动点轨迹的方程;

(2)设,过点作直线,交椭圆于不同于两点,直线 的斜率分别为 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 的极大值为1,则函数f(x)的极小值为(
A.
B.﹣1
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费用支出与销售额之间有如下的对应数据:

2

4

5

6

8

30

40

60

50

70

(1)画出散点图;并说明销售额y与广告费用支出x之间是正相关还是负相关?

(2)请根据上表提供的数据,求回归直线方程

(3)据此估计广告费用为10时,销售收入的值.

(参考公式:,).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 满足:| |=| |=1, =﹣ ,< >=60°,则| |的最大值为(
A.2
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,点在直线上;数列是等差数列,且,它的前9项和为153.

(1)求数列的通项公式;

(2)设,求证:数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为0的等差数列{an}中,a1=2,且a2+1,a4+1,a8+1成等比数列.
(1)求数列{an}通项公式;
(2)设数列{bn}满足bn= ,求适合方程b1b2+b2b3+…+bnbn+1= 的正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC是边长为4的正三角形,点P1 , P2 , P3 , 四等分线段BC(如图所示)

(1)P为边BC上一动点,求 的取值范围?
(2)Q为线段AP1上一点,若 =m + ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)为偶函数,且满足f(x)=f(x+2),f(﹣1)=1,若数列{an}的前n项和Sn满足2Sn=an+1 , a1= ,则f(a5)+f(a6)=(
A.4
B.2
C.1
D.0

查看答案和解析>>

同步练习册答案