精英家教网 > 高中数学 > 题目详情
13.等比数列{an}中,a2=$\frac{1}{4}$,a6=4,记{an}的前n项积为Tn,则T7=(  )
A.1B.1或一1C.2D.2或一2

分析 利用等比中项的性质计算即得结论.

解答 解:设等比数列{an}的公比为q,
∵a2=$\frac{1}{4}$,a6=4,
∴$\root{4}{\frac{{a}_{6}}{{a}_{2}}}$=2,即q=2或-2,
∴a4=${a}_{2}•{q}^{2}$=1,
∴a1a7=a2a6=a3a5=${{a}_{2}}^{2}$=1,
∴T7=1,
故选:A.

点评 本题考查等比数列的前几项的积,利用等比中项的性质是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.如图是某几何体的三视图(单位:cm),则该几何体的表面积是14+2$\sqrt{13}$cm2,体积为4cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一个不透明的盒子中关有蝴蝶、蜜蜂和蜻蜓三种昆虫共n(n=13k,k∈N+)只,现在盒子上开一小孔,每次只能一只昆虫飞出(任意一只昆虫等可能地飞出),已知有2只昆虫先后飞出时,飞出的至少有1只是蜜蜂的概率是$\frac{25}{39}$.
(Ⅰ)若盒子中共有13只昆虫:
①求蜜蜂有几只;
②从盒子先后任意飞出3只昆虫,记飞出蜜蜂的只数为X,求随机变量X的分布列与期望E(X);
(Ⅱ)若只有1只昆虫飞出时,飞出的是蝴蝶的概率是$\frac{5}{13}$.证明:从盒子先后任意飞出2只昆虫,至少有1只蝴蝶飞出的概率不大于$\frac{25}{39}$,并指出盒子中哪种昆虫的只数最少.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:
(Ⅰ)对任意a∈R,a*0=a;
(Ⅱ)对任意Ra,b∈R,a*b=ab+(a*0)+(b*0).
关于函数f(x)=(ex)*$\frac{1}{{e}^{x}}$的性质,有如下说法:①函数f(x)的最小值为3;②函数f(x)为偶函数;③函数f(x)的单调递增区间为(-∞,0].其中所有正确说法的序号为①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数 f(x)=lnx-ax(a∈R)有两个不相等的零点 x1,x2(x1<x2
(I)求a的取值范围;
(Ⅱ)判断$\frac{2}{{{x_1}+{x_2}}}$与a的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列四个结论:其中正确结论的个数是(  )
①命题“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”;
②命题“若x-sinx=0,则x=0”的逆否命题为“若x≠0,则x-sinx≠0”;
③“命题p∨q为真”是“命题p∧q为真”的充分不必要条件;
④若x>0,则x>sinx恒成立.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=|$\frac{1}{2}$x+1|+|x|(x∈R)的最小值为a.
(Ⅰ)求a;
(Ⅱ)已知两个正数m,n满足m2+n2=a,求$\frac{1}{m}$+$\frac{1}{n}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax+$\frac{x-2}{x+1}$(a>1).
(1)求证:f(x)在(-1,+∞)上是增函数;
(2)求证:f(x)=0没有负数根;
(3)若a=3,求方程f(x)=0的根(精确到0.1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某天下午要排物理、化学、生物和两节自习共5节课,如果第一节不排生物,最后一节不排物理,那么不同的排法共有(  )
A.36种B.39种C.60种D.78种

查看答案和解析>>

同步练习册答案