精英家教网 > 高中数学 > 题目详情
如图,已知椭圆的方程为,双曲线的两条渐近线为.过椭圆的右焦点作直线,使,又交于点,设与椭圆的两个交点由上至下依次为.

(1)若的夹角为,且双曲线的焦距为,求椭圆的方程;
(2)求的最大值.
(1);(2).

试题分析:(1)先确定双曲线的渐近线方程,根据条件两条渐近线的夹角为,确定的等量关系,再结合的值,确定的值,最终确定椭圆的方程;(2)设点的坐标为,并设得到,利用向量的坐标运算得到,再由点在椭圆上这一条件将点的坐标代入椭圆方程,通过化简得到与离心率之间的关系式,结合基本不等式得到的最大值.
试题解析:(1)因为双曲线方程为
所以双曲线的渐近线方程为
因为两渐近线的夹角为,所以
所以,所以
 
因为,所以
所以
所以椭圆的方程为
(2)因为,所以直线与的方程为,其中.
因为直线的方程为
联立直线的方程解得点.
,则.
因为点,设点,则有
解得.
因为点在椭圆上,
所以

等式两边同除以
所以
 
所以当,即时,取得最大值
的最大值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,已知椭圆的两个焦点分别为,且到直线的距离等于椭圆的短轴长.

(Ⅰ) 求椭圆的方程;
(Ⅱ) 若圆的圆心为(),且经过,是椭圆上的动点且在圆外,过作圆的切线,切点为,当的最大值为时,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知中心在原点的椭圆的离心率,一条准线方程为
(1)求椭圆的标准方程;
(2)若以>0)为斜率的直线与椭圆相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设直线与双曲线交于A、B,且以AB为直径的圆过原点,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中,点A、B的坐标分别为,点C在x轴上方。
(1)若点C坐标为,求以A、B为焦点且经过点C的椭圆的方程;
(2)过点P(m,0)作倾角为的直线交(1)中曲线于M、N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

)如图,椭圆为椭圆的顶点

(Ⅰ)若椭圆上的点到焦点距离的最大值为,最小值为,求椭圆方程;
(Ⅱ)已知:直线相交于两点(不是椭圆的左右顶点),并满足 试研究:直线是否过定点? 若过定点,请求出定点坐标,若不过定点,请说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的两条渐近线与抛物线的准线分别交于两点,为坐标原点.若双曲线的离心率为2,的面积为,则_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点,垂足为,则的面积是    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为两个不相等的非零实数,则方程所表示的曲线可能是(  )

查看答案和解析>>

同步练习册答案