精英家教网 > 高中数学 > 题目详情
4.函数y=2${\;}^{{x}^{2}+4x+1}$的单调递减区间是(  )
A.(-∞,-2)B.(-∞,-2]C.(-∞,0)D.(-∞,0]

分析 先把函数y=2${\;}^{{x}^{2}+4x+1}$分解为y=2t与t=x2+4x+1,因为y=2t单调递增,所以要求函数y=2${\;}^{{x}^{2}+4x+1}$的单调递减区间只需求函数t=x2+4x+1的单调减区间即可.

解答 解:令t=x2+4x+1,则函数y=2${\;}^{{x}^{2}+4x+1}$可看作由y=2t与t=x2+4x+1复合而成的.
由t=x2+4x+1=(x+2)2-3,得函数t=x2+4x+1的单调减区间是(-∞,-2),
又y=2t单调递增,所以函数y=2${\;}^{{x}^{2}+4x+1}$的单调递减区间是(-∞,-2).
故选:A.

点评 本题考查指数函数的单调性、二次函数的单调性以及复合函数单调性的判定方法,该类问题一要考虑函数定义域,二要遵循“同增异减”的规律.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设O为坐标原点,若x,y满足不等式组$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$,则$\frac{y}{x}$的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在数列{an}中,a1=1,an+2+(-1)nan=1,则数列{an}的前4n项之和为2n(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知F是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点,若以点B(0,b)为圆心的圆与双曲线的一条渐近线相切于点P,且$\overrightarrow{BP}$∥$\overrightarrow{PF}$,则该双曲线的离心率为(  )
A.$\sqrt{5}$+1B.$\frac{{1+\sqrt{3}}}{2}$C.2D.$\frac{{1+\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.偶函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,其中△EFG是斜边为4的等腰直角三角形(E、F是函数图象与x轴的交点,点G在图象上),则f(1)的值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设x>0,求$\frac{2{x}^{2}+5x+3}{x}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,a、b、c分别是角A、B、C的对边,若a2+c2=b2+ac,且a:c=($\sqrt{3}$+1):2,求角C的值是$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.不等式log 2 |x-3|<1的解集为{x|1<x<3或3<x<5}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.三棱锥的四个面都是直角三角形,各棱长的最大值为4,则该三棱锥外接球的体积为(  )
A.$\frac{4π}{3}$B.$\frac{8π}{3}$C.$\frac{16π}{3}$D.$\frac{32π}{3}$

查看答案和解析>>

同步练习册答案