精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=x2-4x+a+3,a∈R;
(1)若函数y=f(x)在[-1,1]上存在零点,求a的取值范围;
(2)设函数g(x)=bx+5-2b,b∈R,当a=3时,若对任意的x1∈[1,4],总存在x2∈[1,4],使得g(x1)=f(x2),求b的取值范围.

分析 (1)根据f(x)在[-1,1]上单调递减且存在零点可得f(-1)f(1)≤0,从而解出a的范围;
(2)对b进行讨论,判断g(x)的单调性,分别求出f(x),g(x)在[1,4]上的值域,令g(x)的值域为f(x)的值域的子集列出不等式组得出b的范围.

解答 解:(1)∵f(x)=x2-4x+a+3的函数图象开口向上,对称轴为x=2,
∴f(x)在[-1,1]上是减函数,
∵函数y=f(x)在[-1,1]上存在零点,
∴f(-1)f(1)≤0,即a(8+a)≤0,
解得:-8≤a≤0.
(2)a=3时,f(x)=x2-4x+6,
∴f(x)在[1,2]上单调递减,在[2,4]上单调递增,
∴f(x)在[2,4]上的最小值为f(2)=2,最大值为f(4)=6.
即f(x)在[2,4]上的值域为[2,6].
设g(x)在[1,4]上的值域为M,
∵对任意的x1∈[1,4],总存在x2∈[1,4],使得g(x1)=f(x2),
∴M⊆[2,6].
当b=0时,g(x)=5,即M={5},符合题意,
当b>0时,g(x)=bx+5-2b在[1,4]上是增函数,
∴M=[5-b,5+2b],
∴$\left\{\begin{array}{l}{5-b≥2}\\{5+2b≤6}\\{b>0}\end{array}\right.$,解得0<b≤$\frac{1}{2}$.
当b<0时,g(x)=bx+5-2b在[1,4]上是减函数,
∴M=[5+2b,5-b],
∴$\left\{\begin{array}{l}{5+2b≥2}\\{5-b≤6}\\{b<0}\end{array}\right.$,解得-1≤b<0.
综上,b的取值范围是$[-1,\frac{1}{2}]$.

点评 本题考查了二次函数的单调性判断,值域计算,零点的存在性定理,分类讨论思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.(1)已知扇形的周长为10,面积为4,求扇形中心角的弧度数;
(2)已知扇形的周长为40,当它的半径和中心角取何值时,才能使扇形的面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求值:
(I)${(2\frac{1}{4})^{\frac{1}{2}}}-{(-9.6)^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}+{(1.5)^{-2}}$;
(II) $lg14-2lg\frac{7}{3}+lg7-lg18$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,在其定义域内既是奇函数又是增函数的为(  )
A.y=lnx3B.y=-x2C.y=-$\frac{1}{x}$D.y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知偶函数f(x)的定义域为R,且在(-∞,0)上是增函数,则f(-$\frac{3}{4}$)与f(a2-a+1)的大小关系为(  )
A.f(-$\frac{3}{4}$)<f(a2-a+1)B.f(-$\frac{3}{4}$)>f(a2-a+1)C.f(-$\frac{3}{4}$)≤f(a2-a+1)D.f(-$\frac{3}{4}$)≥f(a2-a+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆E的中心在原点,焦点F1、F2在x轴上,离心率为$\frac{1}{2}$,在椭圆E上有一动点A与F1、F2的距离之和为4,
(Ⅰ) 求椭圆E的方程;
(Ⅱ) 过A、F1作一个平行四边形,使顶点A、B、C、D都在椭圆E上,如图所示.判断四边形ABCD能否为菱形,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:(1)三角形;(2)四边形;(3)五边形;(4)六边形,其中正确的结论是(  )
A.(1)(3)B.(2)(4)C.(2)(3)(4)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义在R上的函数f(x)的导函数为f′(x),对任意x∈R满足f(x)+f′(x)<0,则下列结论正确的是(  )
A.e2f(2)>e3f(3)B.e2f(2)<e3f(3)C.e2f(2)≥e3f(3)D.e2f(2)≤e3f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a>0,b>0,且满足3a+b=a2+ab,则2a+b的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案