精英家教网 > 高中数学 > 题目详情
16.下列函数中,在其定义域内既是奇函数又是增函数的为(  )
A.y=lnx3B.y=-x2C.y=-$\frac{1}{x}$D.y=x|x|

分析 根据奇函数、偶函数的定义,反比例函数的单调性,以及二次函数、分段函数的单调性便可判断每个选项的正误,从而找出正确选项.

解答 解:A.y=lnx3的定义域为(0,+∞),不关于原点对称,不是奇函数;
∴该选项错误;
B.y=-x2是偶函数,不是奇函数,∴该选项错误;
C.$y=-\frac{1}{x}$在定义域内没有单调性,∴该选项错误;
D.y=x|x|的定义域为R,且(-x)|-x|=-x|x|;
∴该函数在定义域内为奇函数;
$y=x|x|=\left\{\begin{array}{l}{{x}^{2}}&{x≥0}\\{-{x}^{2}}&{x<0}\end{array}\right.$;
∴该函数在定义域内是增函数;
∴该选项正确.
故选D.

点评 考查奇函数、偶函数的定义,以及反比例函数的单调性,二次函数和分段函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.如图所示的算法框图中,e是自然对数的底数,则输出的i=8.(参考数值:1n2018≈7.610)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2},-1<x≤1}\\{f({x-2}),1<x<3}\end{array}}\right.$,若函数f(x)在x=x0处的切线与函数f(x)的图象恰好只有3个公共点,则x0的取值范围是$({0,3-2\sqrt{2}})∪({2\sqrt{2}-1,2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.经过原点的直线与椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)交于A、B两点,点P为椭圆上不同于A、B的一点,直线PA、PB的斜率均存在,且直线PA、PB的斜率之积为-$\frac{1}{4}$.
(1)求椭圆C的离心率;
(2)设F1、F2分别为椭圆的左、右焦点,斜率为k的直线l经过椭圆的右焦点,且与椭圆交于M、N两点,若点F1在以|MN|为直径的圆内部,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=$\left\{\begin{array}{l}{2x+4,x≤0}\\{{2}^{x},x>0}\end{array}\right.$,若f[f(a)]>f[f(a)+1],则实数a的取值范围为(  )
A.$(-\frac{5}{2},-2]$B.$[-\frac{5}{2},-2]$C.[-2,0)D.[-2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若$\overrightarrow{FQ}=-4\overrightarrow{FP}$,则|QF|=(  )
A.35B.$\frac{5}{2}$C.20D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-4x+a+3,a∈R;
(1)若函数y=f(x)在[-1,1]上存在零点,求a的取值范围;
(2)设函数g(x)=bx+5-2b,b∈R,当a=3时,若对任意的x1∈[1,4],总存在x2∈[1,4],使得g(x1)=f(x2),求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=$\sqrt{3}$sin(π+ωx)•sin($\frac{3}{2}$π-ωx)-cos2ωx(ω>0)的最小正周期为T=π.
(1)求f($\frac{4π}{3}$)的值.
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,若(2a-c)cosB=bcosC,求角B的大小以及f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设复数z=1-i(i是虚数单位),则$\frac{2}{z}$+z等于(  )
A.2B.-2C.2iD.-2i

查看答案和解析>>

同步练习册答案