·ÖÎö £¨1£©ÉèP£¨x0£¬y0£©£¬A£¨x1£¬y1£©£¬B£¨-x1£¬-y1£©£¬´úÈëÍÖÔ²·½³ÌµÃ$\frac{{{y}_{0}}^{2}-{{y}_{1}}^{2}}{{{x}_{0}}^{2}-{{x}_{1}}^{2}}=-\frac{{b}^{2}}{{a}^{2}}$£¬ÓÉÖ±ÏßPA¡¢PBµÄбÂÊÖ®»ýΪ-$\frac{1}{4}$£¬µÃµ½$\frac{{b}^{2}}{{{a}^{2}}_{\;}}$=$\frac{1}{4}$£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄÀëÐÄÂÊ£®
£¨2£©ÓÉe=$\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬µÃ$\frac{b}{a}=\frac{1}{2}$£¬´Ó¶ø$\frac{{x}^{2}}{4{b}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¬c=$\sqrt{3}b$£¬½¹µãF1£¨-$\sqrt{3}b$£¬0£©£¬ÉèMN£ºy=k£¨x-$\sqrt{3}b$£©£¬ÁªÁ¢$\left\{\begin{array}{l}{y=k£¨x-\sqrt{3}b£©}\\{{x}^{2}+4{y}^{2}=4{b}^{2}}\end{array}\right.$£¬µÃ$£¨4{k}^{2}+1£©{x}^{2}-8\sqrt{3}{k}^{2}bx+12{k}^{2}{b}^{2}-4{b}^{2}=0$£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢ÏòÁ¿µÄÊýÁ¿»ý£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³ökµÄȡֵ·¶Î§£®
½â´ð ½â£º£¨1£©ÉèP£¨x0£¬y0£©£¬A£¨x1£¬y1£©£¬B£¨-x1£¬-y1£©£¬
Ôò$\left\{\begin{array}{l}{\frac{{{x}_{0}}^{2}}{{a}^{2}}+\frac{{{y}_{0}}^{2}}{{b}^{2}}=1}\\{\frac{{{x}_{1}}^{2}}{{a}^{2}}+\frac{{{y}_{1}}^{2}}{{b}^{2}}=1}\end{array}\right.$£¬¡à$\frac{{{y}_{0}}^{2}-{{y}_{1}}^{2}}{{{x}_{0}}^{2}-{{x}_{1}}^{2}}=-\frac{{b}^{2}}{{a}^{2}}$£¬
¡ß${k}_{PA}•{k}_{PB}=\frac{{y}_{0}-{y}_{1}}{{x}_{0}-{x}_{1}}$•$\frac{{y}_{0}+{y}_{1}}{{x}_{0}+{x}_{1}}$=$\frac{{{y}_{0}}^{2}-{{y}_{1}}^{2}}{{{x}_{0}}^{2}-{{x}_{1}}^{2}}=-\frac{1}{4}$£¬
¡à$\frac{{b}^{2}}{{{a}^{2}}_{\;}}$=$\frac{1}{4}$£¬
¡àÍÖÔ²CµÄÀëÐÄÂÊe=$\sqrt{1-\frac{{b}^{2}}{a2}}$=$\sqrt{1-\frac{1}{4}}=\frac{\sqrt{3}}{2}$£®
£¨2£©¡ße=$\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬¡à$\frac{b}{a}=\frac{1}{2}$£¬
¡à$\frac{{x}^{2}}{4{b}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¬c=$\sqrt{3}b$£¬½¹µãF1£¨-$\sqrt{3}b$£¬0£©£¬
ÉèMN£ºy=k£¨x-$\sqrt{3}b$£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=k£¨x-\sqrt{3}b£©}\\{{x}^{2}+4{y}^{2}=4{b}^{2}}\end{array}\right.$£¬µÃ$£¨4{k}^{2}+1£©{x}^{2}-8\sqrt{3}{k}^{2}bx+12{k}^{2}{b}^{2}-4{b}^{2}=0$£¬
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ôò${x}_{1}+{x}_{2}=\frac{8\sqrt{3}{k}^{2}b}{4{k}^{2}+1}$£¬${x}_{1}{x}_{2}=\frac{12{k}^{2}{b}^{2}-4{b}^{2}}{4{k}^{2}+1}$£¬
${y}_{1}{y}_{2}={k}^{2}£¨{x}_{1}-\sqrt{3}b£©£¨{x}_{2}-\sqrt{3}b£©$=${k}^{2}[{x}_{1}{x}_{2}-\sqrt{3}b£¨{x}_{1}+{x}_{2}£©+3{b}^{2}]$£¬
¡à$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$£¼0£¬
¡à£¨x1+$\sqrt{3}b$£¬y1£©•£¨${x}_{2}+\sqrt{3}b$£¬y2£©=£¨${x}_{1}+\sqrt{3}b{x}_{1}{x}_{2}+\sqrt{3}b$£©+y1y2
=${x}_{1}{x}_{2}+\sqrt{3}b£¨{x}_{1}+{x}_{2}£©+3{b}^{2}$+${k}^{2}[{x}_{1}{x}_{2}-\sqrt{3}b£¨{x}_{1}+{x}_{2}£©+3{b}^{2}]$
=£¨1+k2£©x1x2-$\sqrt{3}b$£¨x1+x2£©£¨1-k2£©+3b2£¨1+k2£©
=$\frac{£¨1+{k}^{2}£©£¨12{k}^{2}{b}^{2}-4{b}^{2}£©}{4{k}^{2}+1}$+$\frac{24{k}^{2}{b}^{2}£¨1-{k}^{2}£©}{4{k}^{2}+1}$+$\frac{-3{b}^{2}£¨1+{k}^{2}£©£¨4{k}^{2}+1£©}{4{k}^{2}+1}$£¼0£¬
¡à£¨1+k2£©£¨12k2-4£©+24k2£¨1-k2£©+3£¨1+k2£©£¨4k2+1£©£¼0£¬
ÕûÀí£¬µÃ${k}^{2}£¼\frac{1}{47}$£¬½âµÃkµÄȡֵ·¶Î§ÊÇ£¨-$\frac{\sqrt{47}}{47}£¬\frac{\sqrt{47}}{47}$£©£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄÀëÐÄÂʵÄÇ󷨣¬¿¼²éʵÊýµÄȡֵ·¶Î§Ç󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâΤ´ï¶¨Àí¡¢ÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | y=lnx3 | B£® | y=-x2 | C£® | y=-$\frac{1}{x}$ | D£® | y=x|x| |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{M}{2017}$ | B£® | $\frac{2017}{M}$ | C£® | $\frac{4M}{2017}$ | D£® | $\frac{2017}{4M}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com