4£®¾­¹ýÔ­µãµÄÖ±ÏßÓëÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©½»ÓÚA¡¢BÁ½µã£¬µãPΪÍÖÔ²Éϲ»Í¬ÓÚA¡¢BµÄÒ»µã£¬Ö±ÏßPA¡¢PBµÄбÂʾù´æÔÚ£¬ÇÒÖ±ÏßPA¡¢PBµÄбÂÊÖ®»ýΪ-$\frac{1}{4}$£®
£¨1£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨2£©ÉèF1¡¢F2·Ö±ðΪÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã£¬Ð±ÂÊΪkµÄÖ±Ïßl¾­¹ýÍÖÔ²µÄÓÒ½¹µã£¬ÇÒÓëÍÖÔ²½»ÓÚM¡¢NÁ½µã£¬ÈôµãF1ÔÚÒÔ|MN|Ϊֱ¾¶µÄÔ²ÄÚ²¿£¬ÇókµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÉèP£¨x0£¬y0£©£¬A£¨x1£¬y1£©£¬B£¨-x1£¬-y1£©£¬´úÈëÍÖÔ²·½³ÌµÃ$\frac{{{y}_{0}}^{2}-{{y}_{1}}^{2}}{{{x}_{0}}^{2}-{{x}_{1}}^{2}}=-\frac{{b}^{2}}{{a}^{2}}$£¬ÓÉÖ±ÏßPA¡¢PBµÄбÂÊÖ®»ýΪ-$\frac{1}{4}$£¬µÃµ½$\frac{{b}^{2}}{{{a}^{2}}_{\;}}$=$\frac{1}{4}$£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄÀëÐÄÂÊ£®
£¨2£©ÓÉe=$\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬µÃ$\frac{b}{a}=\frac{1}{2}$£¬´Ó¶ø$\frac{{x}^{2}}{4{b}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¬c=$\sqrt{3}b$£¬½¹µãF1£¨-$\sqrt{3}b$£¬0£©£¬ÉèMN£ºy=k£¨x-$\sqrt{3}b$£©£¬ÁªÁ¢$\left\{\begin{array}{l}{y=k£¨x-\sqrt{3}b£©}\\{{x}^{2}+4{y}^{2}=4{b}^{2}}\end{array}\right.$£¬µÃ$£¨4{k}^{2}+1£©{x}^{2}-8\sqrt{3}{k}^{2}bx+12{k}^{2}{b}^{2}-4{b}^{2}=0$£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢ÏòÁ¿µÄÊýÁ¿»ý£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³ökµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©ÉèP£¨x0£¬y0£©£¬A£¨x1£¬y1£©£¬B£¨-x1£¬-y1£©£¬
Ôò$\left\{\begin{array}{l}{\frac{{{x}_{0}}^{2}}{{a}^{2}}+\frac{{{y}_{0}}^{2}}{{b}^{2}}=1}\\{\frac{{{x}_{1}}^{2}}{{a}^{2}}+\frac{{{y}_{1}}^{2}}{{b}^{2}}=1}\end{array}\right.$£¬¡à$\frac{{{y}_{0}}^{2}-{{y}_{1}}^{2}}{{{x}_{0}}^{2}-{{x}_{1}}^{2}}=-\frac{{b}^{2}}{{a}^{2}}$£¬
¡ß${k}_{PA}•{k}_{PB}=\frac{{y}_{0}-{y}_{1}}{{x}_{0}-{x}_{1}}$•$\frac{{y}_{0}+{y}_{1}}{{x}_{0}+{x}_{1}}$=$\frac{{{y}_{0}}^{2}-{{y}_{1}}^{2}}{{{x}_{0}}^{2}-{{x}_{1}}^{2}}=-\frac{1}{4}$£¬
¡à$\frac{{b}^{2}}{{{a}^{2}}_{\;}}$=$\frac{1}{4}$£¬
¡àÍÖÔ²CµÄÀëÐÄÂÊe=$\sqrt{1-\frac{{b}^{2}}{a2}}$=$\sqrt{1-\frac{1}{4}}=\frac{\sqrt{3}}{2}$£®
£¨2£©¡ße=$\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬¡à$\frac{b}{a}=\frac{1}{2}$£¬
¡à$\frac{{x}^{2}}{4{b}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¬c=$\sqrt{3}b$£¬½¹µãF1£¨-$\sqrt{3}b$£¬0£©£¬
ÉèMN£ºy=k£¨x-$\sqrt{3}b$£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=k£¨x-\sqrt{3}b£©}\\{{x}^{2}+4{y}^{2}=4{b}^{2}}\end{array}\right.$£¬µÃ$£¨4{k}^{2}+1£©{x}^{2}-8\sqrt{3}{k}^{2}bx+12{k}^{2}{b}^{2}-4{b}^{2}=0$£¬
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Ôò${x}_{1}+{x}_{2}=\frac{8\sqrt{3}{k}^{2}b}{4{k}^{2}+1}$£¬${x}_{1}{x}_{2}=\frac{12{k}^{2}{b}^{2}-4{b}^{2}}{4{k}^{2}+1}$£¬
${y}_{1}{y}_{2}={k}^{2}£¨{x}_{1}-\sqrt{3}b£©£¨{x}_{2}-\sqrt{3}b£©$=${k}^{2}[{x}_{1}{x}_{2}-\sqrt{3}b£¨{x}_{1}+{x}_{2}£©+3{b}^{2}]$£¬
¡à$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$£¼0£¬
¡à£¨x1+$\sqrt{3}b$£¬y1£©•£¨${x}_{2}+\sqrt{3}b$£¬y2£©=£¨${x}_{1}+\sqrt{3}b{x}_{1}{x}_{2}+\sqrt{3}b$£©+y1y2
=${x}_{1}{x}_{2}+\sqrt{3}b£¨{x}_{1}+{x}_{2}£©+3{b}^{2}$+${k}^{2}[{x}_{1}{x}_{2}-\sqrt{3}b£¨{x}_{1}+{x}_{2}£©+3{b}^{2}]$
=£¨1+k2£©x1x2-$\sqrt{3}b$£¨x1+x2£©£¨1-k2£©+3b2£¨1+k2£©
=$\frac{£¨1+{k}^{2}£©£¨12{k}^{2}{b}^{2}-4{b}^{2}£©}{4{k}^{2}+1}$+$\frac{24{k}^{2}{b}^{2}£¨1-{k}^{2}£©}{4{k}^{2}+1}$+$\frac{-3{b}^{2}£¨1+{k}^{2}£©£¨4{k}^{2}+1£©}{4{k}^{2}+1}$£¼0£¬
¡à£¨1+k2£©£¨12k2-4£©+24k2£¨1-k2£©+3£¨1+k2£©£¨4k2+1£©£¼0£¬
ÕûÀí£¬µÃ${k}^{2}£¼\frac{1}{47}$£¬½âµÃkµÄȡֵ·¶Î§ÊÇ£¨-$\frac{\sqrt{47}}{47}£¬\frac{\sqrt{47}}{47}$£©£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄÀëÐÄÂʵÄÇ󷨣¬¿¼²éʵÊýµÄȡֵ·¶Î§Ç󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâΤ´ï¶¨Àí¡¢ÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖª¼¯ºÏA={x|$\frac{3}{x}$£¼1}£¬¼¯ºÏB={y|y=t-2$\sqrt{t-3}$}£¬ÔòA¡ÉB={x|x£¾3}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êý$f£¨x£©=lg\frac{1+x}{1-x}$£¬
£¨1£©ÅжÏf£¨x£©µÄÆæÅ¼ÐÔ£»
£¨2£©ÅжÏf£¨x£©ÔÚ¶¨ÒåÓòÉϵĵ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$ÓëË«ÇúÏß$\frac{x^2}{4}-\frac{y^2}{2}=1$ÓÐÏàͬµÄ½¹µã£¬ÇÒÍÖÔ²C¹ýµãP£¨2£¬1£©£¬ÈôÖ±ÏßlÓëÖ±ÏßOPƽÐÐÇÒÓëÍÖÔ²CÏཻÓÚµãA£¬B£®
£¨¢ñ£© ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£© ÇóÈý½ÇÐÎOABÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÇóÖµ£º
£¨I£©${£¨2\frac{1}{4}£©^{\frac{1}{2}}}-{£¨-9.6£©^0}-{£¨3\frac{3}{8}£©^{-\frac{2}{3}}}+{£¨1.5£©^{-2}}$£»
£¨II£© $lg14-2lg\frac{7}{3}+lg7-lg18$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªÊýÁÐ1£¬$\sqrt{3}$£¬$\sqrt{5}$£¬$\sqrt{7}$£¬¡­£¬$\sqrt{2n-1}$£¬¡­Ôò3$\sqrt{5}$ÊÇËüµÄµÚ23Ï

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÏÂÁк¯ÊýÖУ¬ÔÚÆä¶¨ÒåÓòÄÚ¼ÈÊÇÆæº¯ÊýÓÖÊÇÔöº¯ÊýµÄΪ£¨¡¡¡¡£©
A£®y=lnx3B£®y=-x2C£®y=-$\frac{1}{x}$D£®y=x|x|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÍÖÔ²EµÄÖÐÐÄÔÚÔ­µã£¬½¹µãF1¡¢F2ÔÚxÖáÉÏ£¬ÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÔÚÍÖÔ²EÉÏÓÐÒ»¶¯µãAÓëF1¡¢F2µÄ¾àÀëÖ®ºÍΪ4£¬
£¨¢ñ£© ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£© ¹ýA¡¢F1×÷Ò»¸öƽÐÐËıßÐΣ¬Ê¹¶¥µãA¡¢B¡¢C¡¢D¶¼ÔÚÍÖÔ²EÉÏ£¬ÈçͼËùʾ£®ÅжÏËıßÐÎABCDÄÜ·ñΪÁâÐΣ¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÈçͼËùʾ£¬Ê¹ÓÃÄ£Äâ·½·¨¹À¼ÆÔ²ÖÜÂÊÖµµÄ³ÌÐò¿òÈò£¬P±íʾ¹À¼ÆµÄ½á¹û£¬¸ÕͼÖпհ׿òÄÚÓ¦ÌîÈëP=£¨¡¡¡¡£©
A£®$\frac{M}{2017}$B£®$\frac{2017}{M}$C£®$\frac{4M}{2017}$D£®$\frac{2017}{4M}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸