精英家教网 > 高中数学 > 题目详情
15.已知函数$f(x)=lg\frac{1+x}{1-x}$,
(1)判断f(x)的奇偶性;
(2)判断f(x)在定义域上的单调性.

分析 (1)求出函数的定义域,利用奇函数的定义进行判断;
(2))$\frac{1+x}{1-x}$=-1+$\frac{2}{1-x}$在(-1,1)上单调递增,即可判断f(x)在定义域上的单调性.

解答 解:(1)由$\frac{1+x}{1-x}>0$,可得函数的定义域为(-1,1),
∵f(-x)=lg$\frac{1-x}{1+x}$=-lg$\frac{1+x}{1-x}$=-f(x),
∴函数f(x)是奇函数;
(2)$\frac{1+x}{1-x}$=-1+$\frac{2}{1-x}$在(-1,1)上单调递增,
∴f(x)在定义域上单调递增.

点评 本题考查函数的单调性与奇偶性,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在空间中,a,b是两条不同的直线,α,β是两个不同的平面,则下列命题中真命题的是(  )
A.若α∥β,a?α,则a∥βB.若a?α,b?β,α⊥β,则a⊥b
C.若a∥α,a∥b,则b∥αD.若a∥α,b∥α,则a∥b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图所示的算法框图中,e是自然对数的底数,则输出的i=8.(参考数值:1n2018≈7.610)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线l1:x+my+7=0和l2:(m-2)x+3y+2m=0互相平行,则实数m=(  )
A.m=-1或3B.m=-1C.m=-3D.m=1或m=-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow{a}$=(1,sin2x),$\overrightarrow{b}$=(2,sin2x),其中x∈(0,π),若|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$||$\overrightarrow{b}$|,则tanx的值等于(  )
A.-1B.1C.$\sqrt{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在${({\sqrt{x}+\frac{3}{x}})^n}$的展开式中,各二项式系数之和为64,则展开式中常数项为(  )
A.135B.105C.30D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2},-1<x≤1}\\{f({x-2}),1<x<3}\end{array}}\right.$,若函数f(x)在x=x0处的切线与函数f(x)的图象恰好只有3个公共点,则x0的取值范围是$({0,3-2\sqrt{2}})∪({2\sqrt{2}-1,2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.经过原点的直线与椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)交于A、B两点,点P为椭圆上不同于A、B的一点,直线PA、PB的斜率均存在,且直线PA、PB的斜率之积为-$\frac{1}{4}$.
(1)求椭圆C的离心率;
(2)设F1、F2分别为椭圆的左、右焦点,斜率为k的直线l经过椭圆的右焦点,且与椭圆交于M、N两点,若点F1在以|MN|为直径的圆内部,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=$\sqrt{3}$sin(π+ωx)•sin($\frac{3}{2}$π-ωx)-cos2ωx(ω>0)的最小正周期为T=π.
(1)求f($\frac{4π}{3}$)的值.
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,若(2a-c)cosB=bcosC,求角B的大小以及f(A)的取值范围.

查看答案和解析>>

同步练习册答案