精英家教网 > 高中数学 > 题目详情
20.在${({\sqrt{x}+\frac{3}{x}})^n}$的展开式中,各二项式系数之和为64,则展开式中常数项为(  )
A.135B.105C.30D.15

分析 由题意可得:2n=64,解得n,再利用通项公式即可得出.

解答 解:由题意可得:2n=64,解得n=6.
∴$(\sqrt{x}+\frac{3}{x})^{6}$的通项公式:Tr+1=${∁}_{6}^{r}(\sqrt{x})^{6-r}(\frac{3}{x})^{r}$=${3}^{r}{∁}_{6}^{r}$${x}^{3-\frac{3r}{2}}$,
令3-$\frac{3r}{2}$=0,解得r=2.
∴展开式中常数项为${3}^{2}•{∁}_{6}^{2}$=135.
故选:A.

点评 本题考查了二项式定理的性质及其应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.某实心钢质工件的三视图如图所示,其中侧视图为等腰三角形,俯视图是一个半径为3的半圆,现将该工件切削加工成一个球体,则该球体的最大体积为(  )
A.$\frac{4π}{3}$B.$\frac{2π}{3}$C.πD.$\frac{3π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,已知抛物线y2=4x的焦点为F,直线l过F且依次交抛物线及圆(x-1)2+y2=$\frac{1}{4}$于点A,B,C,D四点,则9|AB|+4|CD|的最小值为$\frac{37}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线的焦点到渐进线的距离等于实半轴长,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.2C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=lg\frac{1+x}{1-x}$,
(1)判断f(x)的奇偶性;
(2)判断f(x)在定义域上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知实数x,y满足$\left\{{\begin{array}{l}{x-y-3≥0}\\{x+2y-6≤0}\\{x>0}\end{array}}\right.$,则$\frac{y}{x}$的最大值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与双曲线$\frac{x^2}{4}-\frac{y^2}{2}=1$有相同的焦点,且椭圆C过点P(2,1),若直线l与直线OP平行且与椭圆C相交于点A,B.
(Ⅰ) 求椭圆C的标准方程;
(Ⅱ) 求三角形OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列1,$\sqrt{3}$,$\sqrt{5}$,$\sqrt{7}$,…,$\sqrt{2n-1}$,…则3$\sqrt{5}$是它的第23项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题p:?x<0,x2≥2x,则命题¬p为(  )
A.?x0<0,x${\;}_{0}^{2}$≥2${\;}^{{x}_{0}}$B.?x0≥0,x${\;}_{0}^{2}$≥2${\;}^{{x}_{0}}$
C.?x0<0,x${\;}_{0}^{2}$<2${\;}^{{x}_{0}}$D.?x0≥0,x${\;}_{0}^{2}$≥2${\;}^{{x}_{0}}$

查看答案和解析>>

同步练习册答案