精英家教网 > 高中数学 > 题目详情
11.如图,已知抛物线y2=4x的焦点为F,直线l过F且依次交抛物线及圆(x-1)2+y2=$\frac{1}{4}$于点A,B,C,D四点,则9|AB|+4|CD|的最小值为$\frac{37}{2}$.

分析 求出||AB|=xA+$\frac{1}{2}$,|CD|=xD+$\frac{1}{2}$,当l⊥x轴时,则xD=xA=1,9|AB|+4|CD|=$\frac{39}{2}$.当l:y=k(x-1)时,代入抛物线方程,得:k2x2-(2k2+4)x+k2=0,9|AB|+4|CD|=$\frac{13}{2}+9{x}_{A}+4{x}_{D}$$≥\frac{13}{2}+2\sqrt{4×9{x}_{A}{x}_{D}}=\frac{37}{2}$.

解答 解:∵y2=4x,焦点F(1,0),准线 l0:x=-1
由定义得:|AF|=xA+1,
又∵|AF|=|AB|+$\frac{1}{2}$,∴|AB|=xA+$\frac{1}{2}$
同理:|CD|=xD+$\frac{1}{2}$,
当l⊥x轴时,则xD=xA=1,∴9|AB|+4|CD|=$\frac{39}{2}$.
当l:y=k(x-1)时,代入抛物线方程,得:k2x2-(2k2+4)x+k2=0,
∴xAxD=1,xA+xD=1,
∴9|AB|+4|CD|=$\frac{13}{2}+9{x}_{A}+4{x}_{D}$$≥\frac{13}{2}+2\sqrt{4×9{x}_{A}{x}_{D}}=\frac{37}{2}$.
综上所述4|AB|+9|CD|的最小值为$\frac{37}{2}$.
故答案为:$\frac{37}{2}$.

点评 本题考查圆与抛物线的综合,考查基本不等式的运用,考查学生的计算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.将函数f(x)=$\sqrt{3}$sinx-cosx的图象向右平移m个单位(m>0),若所得图象对应的函数为偶函数,则m的最小值是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{8}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,PA垂直于矩形ABCD所在的平面,E、F分别是AB、PD的中点,∠ADP=45°.
(1)求证:AF∥平面PCE.
(2)求证:平面PCD⊥平面PCE.
(3)若AD=2,CD=3,求点F到平面PCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.$\overrightarrow a$=(-1,-5,-2),$\overrightarrow b$=(x,2,x+2),若$\overrightarrow a⊥\overrightarrow b$,则x=(  )
A.0B.-6C.$-\frac{14}{3}$D.±6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图所示的算法框图中,e是自然对数的底数,则输出的i=8.(参考数值:1n2018≈7.610)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.抛物线x2=2py(p>0)上一 点A($\sqrt{3}$,m)(m>1)到抛物线准线的距离为$\frac{13}{4}$,点A关于y轴的对称点为B,O为坐标原点,△OAB的内切圆与OA切于点E,点F为内切圆上任意一点,则$\overrightarrow{OE}•\overrightarrow{OF}$的取值范围为$[3-\sqrt{3},3+\sqrt{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线l1:x+my+7=0和l2:(m-2)x+3y+2m=0互相平行,则实数m=(  )
A.m=-1或3B.m=-1C.m=-3D.m=1或m=-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在${({\sqrt{x}+\frac{3}{x}})^n}$的展开式中,各二项式系数之和为64,则展开式中常数项为(  )
A.135B.105C.30D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若$\overrightarrow{FQ}=-4\overrightarrow{FP}$,则|QF|=(  )
A.35B.$\frac{5}{2}$C.20D.3

查看答案和解析>>

同步练习册答案