精英家教网 > 高中数学 > 题目详情
5.已知f(x)=$\sqrt{3}$sin(π+ωx)•sin($\frac{3}{2}$π-ωx)-cos2ωx(ω>0)的最小正周期为T=π.
(1)求f($\frac{4π}{3}$)的值.
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,若(2a-c)cosB=bcosC,求角B的大小以及f(A)的取值范围.

分析 (1)f(x)=$\sqrt{3}$sin(π+ωx)•sin($\frac{3}{2}$π-ωx)-cos2ωx=)=$\sqrt{3}$sinωx•cosωx-cos2ωx
=$\frac{\sqrt{3}}{2}sin2ωx-\frac{1}{2}cos2ωx-\frac{1}{2}$=sin(2ωx-$\frac{π}{6}$)-$\frac{1}{2}$.由最小正周期得ω
(2)由(2a-c)cosB=bcosC得(2sinA-sinC)cosB=sinBcosC,
 cosB、B,再求f(A)的取值范围

解答 解:(1)f(x)=$\sqrt{3}$sin(π+ωx)•sin($\frac{3}{2}$π-ωx)-cos2ωx=$\sqrt{3}$sinωx•cosωx-cos2ωx
=$\frac{\sqrt{3}}{2}sin2ωx-\frac{1}{2}cos2ωx-\frac{1}{2}$=sin(2ωx-$\frac{π}{6}$)-$\frac{1}{2}$.
∵最小正周期为T=π,∴$\frac{2π}{2ω}=π$,⇒ω=1.
∴f(x)=sin(2x-$\frac{π}{6}$)-$\frac{1}{2}$
∴f($\frac{4π}{3}$)=sin(2×$\frac{4π}{3}-\frac{π}{6}$)-$\frac{1}{2}$=$\frac{1}{2}$.
(2)∵(2a-c)cosB=bcosC,∴(2sinA-sinC)cosB=sinBcosC,
2sinAcosB=sinBcosC+cosBsinC=sin(B+C)=sinA.
∵sinA>0,∴cosB=$\frac{1}{2}$,∵B∈(0,π),∴$B=\frac{π}{3}$.
∴A$∈(0,\frac{2π}{3})$,2A-$\frac{π}{6}$$∈(-\frac{π}{6},\frac{7π}{6})$,∴sin(2A-$\frac{π}{6}$)$∈(-\frac{1}{2},1]$.
f(A)的取值范围:(-1,$\frac{1}{2}$].

点评 本题考查了三角恒等变形,解三角形,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=lg\frac{1+x}{1-x}$,
(1)判断f(x)的奇偶性;
(2)判断f(x)在定义域上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,在其定义域内既是奇函数又是增函数的为(  )
A.y=lnx3B.y=-x2C.y=-$\frac{1}{x}$D.y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆E的中心在原点,焦点F1、F2在x轴上,离心率为$\frac{1}{2}$,在椭圆E上有一动点A与F1、F2的距离之和为4,
(Ⅰ) 求椭圆E的方程;
(Ⅱ) 过A、F1作一个平行四边形,使顶点A、B、C、D都在椭圆E上,如图所示.判断四边形ABCD能否为菱形,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:(1)三角形;(2)四边形;(3)五边形;(4)六边形,其中正确的结论是(  )
A.(1)(3)B.(2)(4)C.(2)(3)(4)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题p:?x<0,x2≥2x,则命题¬p为(  )
A.?x0<0,x${\;}_{0}^{2}$≥2${\;}^{{x}_{0}}$B.?x0≥0,x${\;}_{0}^{2}$≥2${\;}^{{x}_{0}}$
C.?x0<0,x${\;}_{0}^{2}$<2${\;}^{{x}_{0}}$D.?x0≥0,x${\;}_{0}^{2}$≥2${\;}^{{x}_{0}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义在R上的函数f(x)的导函数为f′(x),对任意x∈R满足f(x)+f′(x)<0,则下列结论正确的是(  )
A.e2f(2)>e3f(3)B.e2f(2)<e3f(3)C.e2f(2)≥e3f(3)D.e2f(2)≤e3f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示,使用模拟方法估计圆周率值的程序框闰,P表示估计的结果,刚图中空白框内应填入P=(  )
A.$\frac{M}{2017}$B.$\frac{2017}{M}$C.$\frac{4M}{2017}$D.$\frac{2017}{4M}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知曲线f(x)=aex-x+b在x=1处的切线方程为y=(e-1)x-1
(Ⅰ)求f(x)的极值;
(Ⅱ)证明:x>0时,$\frac{x}{f(x-1)+x}$<exlnx+2(e为自然对数的底数)

查看答案和解析>>

同步练习册答案