精英家教网 > 高中数学 > 题目详情
14.如图所示,使用模拟方法估计圆周率值的程序框闰,P表示估计的结果,刚图中空白框内应填入P=(  )
A.$\frac{M}{2017}$B.$\frac{2017}{M}$C.$\frac{4M}{2017}$D.$\frac{2017}{4M}$

分析 由题意以及框图的作用,直接推断空白框内应填入的表达式.

解答 解:由题意以及程序框图可知,用模拟方法估计圆周率π的程序框图,M是圆周内的点的次数,当i大于2017时,
圆周内的点的次数为4M,总试验次数为2017,
所以要求的概率$\frac{4M}{2017}$,
所以空白框内应填入的表达式是P=$\frac{4M}{2017}$.
故选:C.

点评 本题考查程序框图的作用,考查模拟方法估计圆周率π的方法,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.经过原点的直线与椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)交于A、B两点,点P为椭圆上不同于A、B的一点,直线PA、PB的斜率均存在,且直线PA、PB的斜率之积为-$\frac{1}{4}$.
(1)求椭圆C的离心率;
(2)设F1、F2分别为椭圆的左、右焦点,斜率为k的直线l经过椭圆的右焦点,且与椭圆交于M、N两点,若点F1在以|MN|为直径的圆内部,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=$\sqrt{3}$sin(π+ωx)•sin($\frac{3}{2}$π-ωx)-cos2ωx(ω>0)的最小正周期为T=π.
(1)求f($\frac{4π}{3}$)的值.
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,若(2a-c)cosB=bcosC,求角B的大小以及f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,正三棱柱ABC-A1B1C1的所有棱长均为2,D,E分别是BB1和AB的中点.
(1)证明:AD⊥平面A1EC;
(2)求点B1到平面A1EC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知双曲线方程为16x2-9y2=144.
(1)求该双曲线的实轴长、虚轴长、离心率;
(2)若抛物线C的顶点是该双曲线的中心,而焦点是其左顶点,求抛物线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修.每台机器出现故障需要维修的概率为$\frac{1}{3}$.
(1)问该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?
(2)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资.每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润.若该厂现有2名工人.求该厂每月获利的均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设复数z=1-i(i是虚数单位),则$\frac{2}{z}$+z等于(  )
A.2B.-2C.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足:a1=$\frac{3}{2}$,an=an-12+an-1(n≥2且n∈N).
(Ⅰ)求a2,a3;并证明:2${\;}^{{2}^{n-1}}$-$\frac{1}{2}$≤an≤$\frac{1}{2}$•3${\;}^{{2}^{n-1}}$;
(Ⅱ)设数列{an2}的前n项和为An,数列{$\frac{1}{{a}_{n}+1}$}的前n项和为Bn,证明:$\frac{{A}_{n}}{{B}_{n}}$=$\frac{3}{2}$an+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)是定义在[-1,0)∪(0,1]上的奇函数,当x∈[-1,0)时,f(x)=2ax+$\frac{1}{{x}^{2}}$ (a∈R).
(1)求函数f(x)的解析式;
(2)若a>-1,试判断f(x)在(0,1]上的单调性;
(3)是否存在实数a,使得当x∈(0,1]时,f(x)有最大值-6.

查看答案和解析>>

同步练习册答案