精英家教网 > 高中数学 > 题目详情
15.如图,在半径为$\sqrt{7}$的圆O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为(  )
A.5B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.4

分析 首先利用相交弦定理求出CD的长,再利用勾股定理求出圆心O到弦CD的距离,注意计算的正确率.

解答 解:由相交弦定理得,AP×PB=CP×PD,
∴2×2=CP•1,
解得:CP=4,又PD=1,
∴CD=5,
又⊙O的半径为$\sqrt{7}$,
则圆心O到弦CD的距离为d=$\sqrt{7-(\frac{5}{2})^{2}}$=$\frac{\sqrt{3}}{2}$.
故选:B.

点评 此题主要考查了相交弦定理,垂径定理,勾股定理等知识,题目有一定综合性,是中、高考题的热点问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,四边形ABCD内接于圆O,AC与BD相交于点F,AE与圆O相切于点A,与CD的延长线相交于点E,∠ADE=∠BDC.
(Ⅰ)证明:A、E、D、F四点共圆;
(Ⅱ)证明:AB∥EF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点P为线段y=2x,x∈[2,4]上任意一点,点Q为圆C:(x-3)2+(y+2)2=1上一动点,则线段|PQ|的最小值为(  )
A.$\sqrt{37}$-1B.$\frac{8\sqrt{5}}{5}$C.$\frac{8\sqrt{5}-5}{5}$D.$\sqrt{37}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,直四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形,∠BAD=60°,四边形BDD1B1是正方形.E是棱CC1的中点.
(1)求证:面BED1⊥面BDD1B1
(2)求二面角B1-AD1-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图.在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且AB=AC=1.
(I)证明:MN∥平面PCD;
(Ⅱ)设直线PC与平面ABCD所成角为$\frac{π}{3}$,求二面角C-PB一A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,PA,PC为圆O的两条不同切线,割线PDB与圆O交于不同两点D,B.
(1)求证:$\frac{AD}{AB}$=$\frac{PC}{PB}$;
(2)若DA=4,AB=6,BC=3,求线段CD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=aln(x+1)-x2,在区间(0,1)内任取两个不相等的实数p,q,若不等式$\frac{f(p+1)-f(q+1)}{p-q}$>1恒成立,则实数a的取值范围是(  )
A.[15,+∞)B.[6,+∞)C.(-∞,15]D.(-∞,6]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.以原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为ρsin2θ=2cosθ,点B满足2$\overrightarrow{OB}$=$\overrightarrow{OA}$,其中A在曲线C1上,点B的轨迹为曲线C2
(Ⅰ)求曲线C2的极坐标方程;
(Ⅱ)已知直线l:$\left\{\begin{array}{l}{x=2+t}\\{y=t}\end{array}\right.$(t为参数)与曲线C2相交于M,N,求△MNO的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线l:4x+3y-5=0与圆C:x2+y2-4=0交于A、B两点,O为坐标原点,则 $\overrightarrow{OA}$•$\overrightarrow{OB}$=(  )
A.2$\sqrt{3}$B.-2$\sqrt{3}$C.2D.-2

查看答案和解析>>

同步练习册答案