精英家教网 > 高中数学 > 题目详情
13.某班准备从甲、乙等七人中选派四人发言,要求甲乙两人至少有一人参加,那么不同的发言顺序有(  )
A.30B.600C.720D.840

分析 根据题意,分2种情况讨论,①只有甲乙其中一人参加,②甲乙两人都参加,由排列、组合计算可得其符合条件的情况数目,由加法原理计算可得答案.

解答 解:根据题意,分2种情况讨论,
若只有甲乙其中一人参加,有C21•C53•A44=480种情况;
若甲乙两人都参加,有C22•C52•A44=240种情况,
则不同的发言顺序种数480+240=720种,
故选:C.

点评 本题考查排列、组合的实际应用,正确分类是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若f(x)为R上的奇函数,且在(-∞,0)内是增函数,又f(-2)=0,则xf(x)<0的解集为(-2,0)∪(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图是一个算法流程图,当输入的x的值为-2时,则输出的y的值为-7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某校高一有550名学生,高二有700名学生,高三有750名学生,学校为了解学生的课外阅读情况,决定按年级分层抽样,抽取100名学生,则高二年级应抽取35名学生.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(理科学生做)甲、乙、丙三名学生参加A,B两所大学的自主招生考试,假设他们能通过A大学考试的概率都是$\frac{1}{2}$,他们能通过B大学的概率都是$\frac{2}{3}$.
(1)求甲只通过一所大学考试的概率;
(2)设三名学生中同时通过两所大学考试的人数为X,求X的概率分布与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若复数(a+i)(1+2i)是纯虚数(i是虚数单位,a是实数),则a等于(  )
A.$\frac{1}{2}$B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上的点到其焦点的最小距离为2,且渐近线方程为y=±$\frac{3}{4}$x,则该双曲线的方程为(  )
A.$\frac{{x}^{2}}{64}$-$\frac{{y}^{2}}{36}$=1B.$\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{64}$=1C.$\frac{{x}^{2}}{32}$-$\frac{{y}^{2}}{18}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=$\frac{1}{2}$sinωxcosωx-$\frac{\sqrt{3}}{2}$cos2ωx+$\frac{\sqrt{3}}{4}$(x∈R,ω>0)的最小正周期为$\frac{π}{2}$,则ω等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2sin2(x-$\frac{π}{4}$)+$\sqrt{3}$cos2x-3.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若在△ABC中,AB=2|f($\frac{π}{4}$)|,AC=$\sqrt{3}$BC,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案