精英家教网 > 高中数学 > 题目详情
11.已知f(x)=$\frac{1}{{2}^{x}+1}$,则f(log32)+f(log3$\frac{1}{2}$)=1.

分析 推导出f(x)+f(-x)=1,由此能求出f(log32)+f(log3$\frac{1}{2}$)的值.

解答 解:∵f(x)=$\frac{1}{{2}^{x}+1}$,
∴f(x)+f(-x)=$\frac{1}{{2}^{x}+1}+\frac{1}{{2}^{-x}+1}$=$\frac{1}{{2}^{x}+1}+\frac{{2}^{x}}{1+{2}^{x}}$=1,
∴f(log32)+f(log3$\frac{1}{2}$)=f(log32)+f(-log32)=1.
故答案为:1.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系中,点M(-5,-4),N(-1,0),圆C的半径为2,圆心在直线$l:y=-\frac{1}{2}x-1$上
(1)若圆心C也在圆x2+y2-6x+4=0上,过点M作圆C的切线,求切线的方程.
(2)若圆C上存在点R,使$|RM|=\sqrt{2}|RN|$,求圆心C的纵坐标b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.实数a,b,“$\frac{1}{a}$<$\frac{1}{b}$<0“是“a>b“的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,点O是△ABC的外心,以OA、OB为邻边作平行四边形OADB,再以OC、OD为邻边作平行四边形OCHD,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$;
(1)用$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$表示向量$\overrightarrow{OH}$;
(2)证明:$\overrightarrow{AH}$⊥$\overrightarrow{BC}$;
(3)若在△ABC中,∠BAC=60°,∠ABC=45°,外接圆半径为2;求|$\overrightarrow{OH}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.解下列方程:
(1)$(\frac{2}{3})^{x}(\frac{9}{8})^{x}=\frac{27}{64}$
(2)2logx25-3log25x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若0<a<1,则函数y=ax与y=(1-a)x2的图象可能是下列四个选项中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1,F2,离心率为$\frac{1}{2}$.设过点F2的直线l与椭圆C相交于不同两点A,B,$△ABF_1^{\;}$周长为8.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点T(4,0),证明:当直线l变化时,总有TA与TB的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知ξ:N(2017,σ2),若P(2016≤ξ≤2017)=0.2,则P(ξ>2018)等于(  )
A.0.1B.0.2C.0.3D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知椭圆C:$\left\{\begin{array}{l}{x=cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数)离心率e=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案