分析 设∠B=θ,则∠A=$\frac{1}{2}θ$,BA=ρ,$\frac{3θ}{2}$<π.在△ABC中,由正弦定理可得:$\frac{10}{sin\frac{1}{2}θ}$=$\frac{ρ}{sin(π-\frac{3}{2}θ)}$,化简即可得出.
解答 解:设∠B=θ,则∠A=$\frac{1}{2}θ$,BA=ρ,$\frac{3θ}{2}$<π(即$θ<\frac{2π}{3}$).
在△ABC中,由正弦定理可得:$\frac{10}{sin\frac{1}{2}θ}$=$\frac{ρ}{sin(π-\frac{3}{2}θ)}$,
可得ρ=$\frac{10sin\frac{3}{2}θ}{sin\frac{1}{2}θ}$.$θ∈(0,\frac{2π}{3})$.
点评 本题考查了极坐标方程、正弦定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(ex)=|x| | B. | f(ex)=e2x | C. | f(lnx)=lnx2 | D. | f(lnx)=x+$\frac{1}{x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 2$\sqrt{5}$ | C. | 3$\sqrt{5}$ | D. | 5$\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com