精英家教网 > 高中数学 > 题目详情
9.甲、乙两人射击的命中率分别为0.8,0.5,二人联手每一次同时向同一目标各自射击一枚子弹,如果有人射中目标,目标被引爆,然后转向下一目标,若两人联手射击三次,目标被引爆的个数的数学期望为2.7.

分析 先求出二人联手每一次同时向同一目标各自射击一枚子弹,目标被引爆的概率,从而得到两人联手射击三次,目标被引爆的个数X~B(3,0.9),由此能求出结果.

解答 解:∵甲、乙两人射击的命中率分别为0.8,0.5,
二人联手每一次同时向同一目标各自射击一枚子弹,如果有人射中目标,目标被引爆,
∴二人联手每一次同时向同一目标各自射击一枚子弹,目标被引爆的概率p=1-(1-0.8)(1-0.5)=0.9,
∴两人联手射击三次,目标被引爆的个数X~B(3,0.9),
∴两人联手射击三次,目标被引爆的个数的数学期望EX=3×0.9=2.7.
故答案为:2.7.

点评 本题考查离散型随机变量的数学期望的求法,是基础题,解题时要注意二项分布的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数y=$\frac{2{x}^{2}-x+2}{{x}^{2}+x+1}$,x∈[1,5],则函数的值域是[1,$\frac{47}{31}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=|x+a|在区间(-∞,1]上单调递减,则a的取值范围是(  )
A.a≥1B.0<a≤1C.a≤-1D.-1≤a<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列函数定积分.
(1)已知f(x)=4x3+4sinx,求${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$f(x)dx;
(2)已知f(x)=$\left\{\begin{array}{l}{{x}^{2},(x≤0)}\\{cosx-1,(x>0)}\end{array}\right.$,求${∫}_{-1}^{1}$f(x)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足$\overrightarrow{OP}$=$\overrightarrow{OA}$+t($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$),证明P的轨迹一定通过△ABC的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.甲袋中装有2个白球1个黑球,乙袋中装有3个白球1个红球,现从甲袋中连续3次有放回的摸出一球,从乙袋中连续两次有放回的摸出一球.
(1)求从甲袋中恰有一次摸出白球同时在乙袋中恰有一次摸出红球的概率;
(2)求从甲袋中摸出白球的次数与从乙袋中摸出白球的次数之和为2的概率;
(3)设从甲袋中摸出白球的次数为随机变量ξ,求Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解下列不等式:
(1)(x-1)(x2-5x+6)(x2-x-2)2<0;
(2)(x2-1)(x+1)(x+2)≥0;
(3)(1-x)(x-$\frac{\sqrt{2}}{2}$)(x+1)(x-2)≥0;
(4)(x+1)(x-2)2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=$\frac{2x}{{x}^{2}+4}$.
(1)若关于x的不等式f(x)>k的解集是{x|x<-4,或x>-1},求实数k的值;
(2)设g(x)=x2-2mx+3,x∈[1,3],若对任意的x1>0,总存在x2∈[1,3]使得f(x1)<g(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在边长为6的正三角形△ABC内,△APQ的边PQ在BC边上滑动且PQ=2,求△APQ三边的平方和的最大值与最小值.

查看答案和解析>>

同步练习册答案