精英家教网 > 高中数学 > 题目详情
8.已知sinθ=-$\frac{{2\sqrt{5}}}{5}$.其中θ是第三象限角.
(Ⅰ)求cosθ,tanθ的值;
(Ⅱ)求$tan({θ-\frac{π}{4}})$的值.

分析 (Ⅰ)由题意,利用同角三角函数的基本关系求得cosθ,tanθ的值.
(Ⅱ)利用两角差的正切公式求得$tan({θ-\frac{π}{4}})$的值.

解答 解:∵sinθ=-$\frac{{2\sqrt{5}}}{5}$,其中θ是第三象限角,
(Ⅰ)∴cosθ=-$\sqrt{{1-sin}^{2}θ}$=-$\frac{\sqrt{5}}{5}$,tanθ=$\frac{sinθ}{cosθ}$=2.
(Ⅱ)$tan({θ-\frac{π}{4}})$=$\frac{tanθ-1}{tanθ+1}$=$\frac{-3}{3}$=-1.

点评 题主要考查同角三角函数的基本关系,两角差的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如表:
年龄(单位:岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数31012721
(Ⅰ)若以“年龄45岁为分界点”.由以上统计数据完成下面的2×2列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关:
年龄不低于45岁的人数年龄低于45岁的人数合计
赞成
不赞成
合计
(Ⅱ)若从年龄在,总有g(x1)<f (x2)成立,其中e=2.71828…是自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$cos(α-\frac{π}{3})=\frac{4}{5}$,则$sin(α+\frac{π}{3})+sinα$等于(  )
A.$\frac{{4\sqrt{3}}}{5}$B.$\frac{{3\sqrt{3}}}{5}$C.$-\frac{{3\sqrt{3}}}{5}$D.$-\frac{{4\sqrt{3}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an},{bn}满足a1=$\frac{1}{2},{a_n}+{b_n}=1,{b_{n+1}}=\frac{b_n}{{1-{a_n}^2}}$,则b2017=(  )
A.$\frac{2017}{2018}$B.$\frac{2018}{2017}$C.$\frac{2019}{2018}$D.$\frac{2018}{2019}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=4x3+ax2+bx+5的图象在x=1处的切线方程为y=-12x.
(1)求函数f(x)的解析式;
(2)求y=f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列2008,2009,1,-2008,…若这个数列从第二项起,每一项都等于它的前后两项之和,则这个数列的前2017项之和S2017等于(  )
A.0B.2008C.2017D.4017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.要证明x<$\sqrt{y}$,只要证明不等式M,不等式M不可能是(  )
A.x2<yB.|x|<$\sqrt{y}$C.-x<$\sqrt{y}$D.x<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知△ABC中,∠A,∠B,∠C的对边长度分别为a,b,c,已知点O为该三角形的外接圆圆心,点D,E,F分别为边BC,AC,AB的中点,则OD:OE:OF=(  )
A.a:b:cB.$\frac{1}{a}:\frac{1}{b}:\frac{1}{c}$C.sinA:sinB:sinCD.cosA:cosB:cosC

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.平面 α∥平面 β,直线 a⊆α,下列四个说法中,正确的个数是
①a与β内的所有直线平行;
②a与β内的无数条直线平行;
③a与β内的任何一条直线都不垂直;
④a与β无公共点.(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案