精英家教网 > 高中数学 > 题目详情
16.已知数列{an},{bn}满足a1=$\frac{1}{2},{a_n}+{b_n}=1,{b_{n+1}}=\frac{b_n}{{1-{a_n}^2}}$,则b2017=(  )
A.$\frac{2017}{2018}$B.$\frac{2018}{2017}$C.$\frac{2019}{2018}$D.$\frac{2018}{2019}$

分析 利用递推公式分别求出数列{an},{bn}的前4项,由此猜想${b}_{n}=\frac{n}{n+1}$,从而能b2017的值.

解答 解:∵数列{an},{bn}满足a1=$\frac{1}{2},{a_n}+{b_n}=1,{b_{n+1}}=\frac{b_n}{{1-{a_n}^2}}$,
∴b1=1-$\frac{1}{2}$=$\frac{1}{2}$,
${b}_{2}=\frac{\frac{1}{2}}{1-(\frac{1}{2})^{2}}$=$\frac{2}{3}$,${a}_{2}=1-\frac{2}{3}=\frac{1}{3}$,
b3=$\frac{\frac{2}{3}}{1-(\frac{1}{3})^{2}}$=$\frac{3}{4}$,${a}_{3}=1-\frac{3}{4}$=$\frac{1}{4}$,
b4=$\frac{\frac{3}{4}}{1-(\frac{1}{4})^{2}}$=$\frac{4}{5}$,a4=1-$\frac{4}{5}=\frac{1}{5}$,
由此猜想${b}_{n}=\frac{n}{n+1}$,
∴b2017=$\frac{2017}{2018}$.
故选:A.

点评 本题考查数列的第2017项的求法,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知不等式ax2+3x-2>0的解集为{x|1<x<b},则a+b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\left\{\begin{array}{l}{x^2}-2x+2,x≤2\\{log_2}x,x>2\end{array}\right.$,若?x0∈R,使得$f({x_0})≤5m-4{m^2}$成立,则实数m的取值范围为(  )
A.$[{-1,\frac{1}{4}}]$B.$[{\frac{1}{4},1}]$C.$[{-2,\frac{1}{4}}]$D.$[{\frac{1}{3},1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,公园有一块边长为2的等边三角形△ABC的地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.
(1)设AD=x,DE=y,请将y表示为x的函数,并求出该函数的定义域;
(2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请予以说明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.
(1)求证:DE∥平面PBC;
(2)求证:AB⊥PE;
(3)求三棱锥P-BEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若a,b∈R,且(a+i)i=b+i,则(  )
A.a=1,b=1B.a=-1,b=1C.a=1,b=-1D.a=-1,b=-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知sinθ=-$\frac{{2\sqrt{5}}}{5}$.其中θ是第三象限角.
(Ⅰ)求cosθ,tanθ的值;
(Ⅱ)求$tan({θ-\frac{π}{4}})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=aln(x+1)-x2,任意x1,x2∈(0,1),x1>x2时,都有f(x1+1)-f(x2+1)>x1-x2成立,则实数a的取值范围是(  )
A.a≥15B.a>15C.a<5D.a≤5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.等差数列{an}中,Sn是其前n项和,a1=-2017,$\frac{S2009}{2009}$-$\frac{S2007}{2007}$=2,则S2017的值为-2017.

查看答案和解析>>

同步练习册答案