| A. | a≥15 | B. | a>15 | C. | a<5 | D. | a≤5 |
分析 问题转化为y=f(x+1)-x=aln(x+2)-x2-3x-1在(0,1)上递增,求出函数的导数,问题转化为a≥(x+2)(2x+3)在(0,1)恒成立,求出a的范围即可.
解答 解:f(x1+1)-f(x2+1)>x1-x2成立,
即f(x1+1)-x1>f(x2+1)-x2,x1,x2∈(0,1)恒成立,
∴y=f(x+1)-x=aln(x+2)-x2-3x-1在(0,1)上递增,
∴y′≥0恒成立即a≥(x+2)(2x+3)在(0,1)恒成立,
∵(x+2)(2x+3)<15,
∴a≥15,
故选:A.
点评 本题考查导数的应用,函数的恒成立问题,以及利用函数的单调性求函数的最值.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2017}{2018}$ | B. | $\frac{2018}{2017}$ | C. | $\frac{2019}{2018}$ | D. | $\frac{2018}{2019}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 2008 | C. | 2017 | D. | 4017 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2<y | B. | |x|<$\sqrt{y}$ | C. | -x<$\sqrt{y}$ | D. | x<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a:b:c | B. | $\frac{1}{a}:\frac{1}{b}:\frac{1}{c}$ | C. | sinA:sinB:sinC | D. | cosA:cosB:cosC |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=f(x)的图象关于y轴对称 | B. | y=f(x)的极小值为-2 | ||
| C. | y=f(x)的极大值为-2 | D. | y=f(x)在(0,2)上是增函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com