精英家教网 > 高中数学 > 题目详情
6.等差数列{an}中,Sn是其前n项和,a1=-2017,$\frac{S2009}{2009}$-$\frac{S2007}{2007}$=2,则S2017的值为-2017.

分析 求出$\frac{S2009}{2009}$-$\frac{S2007}{2007}$=$\frac{2009({a}_{1}+{a}_{2009})}{2}$-$\frac{2007({a}_{1}+{a}_{2007})}{2}$=d=2,由此能求出S2017

解答 解:S2009=$\frac{2009({a}_{1}+{a}_{2009})}{2}$,
S2007=$\frac{2007({a}_{1}+{a}_{2007})}{2}$,
∴$\frac{S2009}{2009}$-$\frac{S2007}{2007}$=$\frac{2009({a}_{1}+{a}_{2009})}{2}$-$\frac{2007({a}_{1}+{a}_{2007})}{2}$=d=2,
∵a1=-2017,
∴S2017=na1+$\frac{n(n-1)}{2}$d=-2017×2017+2017×2016=-2017.
故答案为:-2017.

点评 本题考查等差数列的前2017项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知数列{an},{bn}满足a1=$\frac{1}{2},{a_n}+{b_n}=1,{b_{n+1}}=\frac{b_n}{{1-{a_n}^2}}$,则b2017=(  )
A.$\frac{2017}{2018}$B.$\frac{2018}{2017}$C.$\frac{2019}{2018}$D.$\frac{2018}{2019}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知△ABC中,∠A,∠B,∠C的对边长度分别为a,b,c,已知点O为该三角形的外接圆圆心,点D,E,F分别为边BC,AC,AB的中点,则OD:OE:OF=(  )
A.a:b:cB.$\frac{1}{a}:\frac{1}{b}:\frac{1}{c}$C.sinA:sinB:sinCD.cosA:cosB:cosC

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=ex-2ax.若函数f(x)在R内没有零点,则a的取值范围是a<$\frac{e}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,角A,B,C所对边分别为a,b,c,且(2b-a)cosC=ccosA,c=3,$a+b=\sqrt{6}ab$,则△ABC的面积为(  )
A.$\frac{{3\sqrt{3}}}{8}$B.2C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{3\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}的前n项和${S_n}={2^{n+2}}-4$,数列{bn}满足${b_n}=\frac{1}{{nlo{g_2}\;{a_n}}}$.
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.平面 α∥平面 β,直线 a⊆α,下列四个说法中,正确的个数是
①a与β内的所有直线平行;
②a与β内的无数条直线平行;
③a与β内的任何一条直线都不垂直;
④a与β无公共点.(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x3+ax2+(a-3)x(a∈R)的导函数是f'(x),若f'(x)是偶函数,则以下结论正确的是(  )
A.y=f(x)的图象关于y轴对称B.y=f(x)的极小值为-2
C.y=f(x)的极大值为-2D.y=f(x)在(0,2)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若X~B(5,0.5),则P(X≥4)=$\frac{3}{16}$.

查看答案和解析>>

同步练习册答案