精英家教网 > 高中数学 > 题目详情
椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=α,且α∈[
π
12
 , 
12
]
,则椭圆的离心率的取值范围为(  )
A、[
2
2
6
3
]
B、(0,
2
2
]
C、[
2
2
,1)
D、[
6
3
,1)
考点:椭圆的简单性质
专题:圆锥曲线中的最值与范围问题
分析:由已知条件,利用根据椭圆定义推导出|AF|+|BF|=2a,再由O是Rt△ABF的斜边中点,推导出e=
1
2
sin(α+
π
4
)
,由此根据α∈[
π
12
 , 
12
]
,能求出椭圆的离心率的取值范围.
解答: 解:∵B和A关于原点对称
∴B也在椭圆上
设左焦点为F′,
根据椭圆定义:|AF|+|AF′|=2a
又∵|BF|=|AF′|,
∴|AF|+|BF|=2a  …①
O是Rt△ABF的斜边中点,∴|AB|=2c
又|AF|=2csinα    …②
|BF|=2ccosα    …③
②③代入①2csinα+2ccosα=2a
c
a
=
1
sinα+cosα

即e=
1
sinα+cosα
=
1
2
sin(α+
π
4
)

α∈[
π
12
 , 
12
]

π
3
≤α+
π
4
4

3
2
≤sin(α+
π
4
)≤1
2
2
≤e≤
6
3

故选:A.
点评:本题考查椭圆的离心率的取值范围的求法,是中档题,解题时要认真审题,注意三角函数性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
1-cosx+sinx
1+cosx+sinx
=-2
,则sinx的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线焦点为F1、F2,虚轴的端点为P,∠F1PF2=
3
,则双曲线的离心率为(  )
A、
2
3
3
B、
2
6
3
C、
6
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x=2与双曲线
x2
4
-y2=1
的渐近线交于A、B两点,设P为双曲线上的任意一点,若
OP
=a
OA
+b
OB
(a,b∈R,O为坐标原点),则a、b满足的关系是(  )
A、ab=
1
2
B、ab=
1
4
C、a2+b2=
1
2
D、a2+b2=
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:ax+2y-1=0与直线l2:ax-2y-3=0,“a=2”是“l1的方向向量是l2的法向量”的(  )
A、充分非必要条件
B、必要非充分条件
C、充要条件
D、既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2x3+
3x
+cosx,则导数y′=(  )
A、6x2+x-
2
3
-sin x
B、2x2+
1
3
x-
2
3
-sin x
C、6x2+
1
3
x-
2
3
+sin x
D、6x2+
1
3
x-
2
3
-sin x

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线x2-
y2
9
=1
的实轴长为(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线f(x)=x2+3x在x=-1处的切线方程为(  )
A、x-y+1=0
B、x-y-1=0
C、2x+y+4=0
D、2x+y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ex
ax+b
,(a,b为常数,e是自然对数的底数)在x=1处的切线方程为y=
e
4
(x+1)

(1)求a,b的值,并求函数f(x)的单调区间;
(2)当x1≠x2,f(x1)=f(x2)时,证明:x1+x2>0.

查看答案和解析>>

同步练习册答案