分析 (1)利用${a_1}=a+\frac{1}{a},{a_{n+1}}={a_1}-\frac{1}{a_n}$,代入计算,可得结论,猜想${a_n}=\frac{{{a^{2n+2}}-1}}{{a({a^{2n}}-1)}}$.
(2)用归纳法进行证明,检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成立
解答 解:(1)∵${a_1}=a+\frac{1}{a},{a_{n+1}}={a_1}-\frac{1}{a_n}$,∴${a_2}={a_1}-\frac{1}{a_1}=a+\frac{1}{a}-\frac{a}{{a+\frac{1}{a}}}-\frac{a}{{{a^2}+1}}=\frac{{{a^4}+{a^2}+1}}{{a({a^2}+1)}}$${a_3}={a_1}-\frac{1}{a_2}=\frac{{a_{\;}^2+1}}{a}-\frac{{a({a^2}+1)}}{{{a^4}+{a^2}+1}}=\frac{{{a^6}+{a^4}+{a^2}+1}}{{a({a^4}+{a^2}+1)}}$
同理可得${a_4}=\frac{{{a^8}+{a^6}+{a^4}+{a^2}+1}}{{a({a^6}+{a^4}+{a^2}+1)}}$
猜想${a_n}=\frac{{{a^{2n}}+{a^{2n-2}}+…+{a^2}+1}}{{a({a^{2n-2}}+{a^{2n-4}}+…+1)}}=\frac{{\frac{{{a^{2n+2}}-1}}{{{a^2}-1}}}}{{a•\frac{{{a^{2n-1}}}}{{{a^2}-1}}}}=\frac{{{a^{2n+2}}-1}}{{a({a^{2n}}-1)}}$
(2)(ⅰ)当n=1时,右边=$\frac{{{a^4}-1}}{{a({a^2}-1)}}=\frac{{{a^2}+1}}{a}={a_1}$,等式成立.
(ⅱ)假设当n=k时(k∈N*),等式成立,即${a_k}=\frac{{{a^{2k+2}}-1}}{{a({a^{2k}}-1)}}$,则当n=k+1时,${a_{k+1}}=a-\frac{1}{a_k}=\frac{{{a^2}+1}}{a}-\frac{{a({a^{2k}}-1)}}{{{a^{2k+2}}-1}}$=$\frac{{({a^2}+1)({a^{2k+2}}-1)-{a^2}({a^{2k}}-1)}}{{a({a^{2k+2}}-1)}}$=$\frac{{{a^{2(k+2)}}-1}}{{a({a^{2(k+1)}}-1)}}$,
这就是说,当n=k+1时,等式也成立.
根据(ⅰ)、(ⅱ)可知,对于一切n∈N*,${a_n}=\frac{{{a^{2n+2}}-1}}{{a({a^{2n}}-1)}}$成立.
点评 此题主要考查归纳法的证明,归纳法一般三个步骤:(1)验证n=1成立;(2)假设n=k成立;(3)利用已知条件证明n=k+1也成立,从而得证,这是数列的通项一种常用求解的方法
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com