精英家教网 > 高中数学 > 题目详情
9.由曲线y=$\sqrt{x}$,直线x=2及x轴所围图形的面积为$\frac{4\sqrt{2}}{3}$.

分析 根据题意绘制出积分区域,根据定积分的几何意义求得所围图形的面积S.

解答 解:由题意画出积分区域,如图:
∴所围成图形的面积S=${∫}_{0}^{2}$$\sqrt{x}$dx=$\frac{2}{3}$•${x}^{\frac{3}{2}}$${丨}_{0}^{2}$=$\frac{4\sqrt{2}}{3}$,
故答案为:$\frac{4\sqrt{2}}{3}$.

点评 本题考查定积分的几何意义,考查定积分的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.以下四个命题:
①若函数y=ex-mx(m∈R)有大于零的极值点,则实数m>1;
②命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则$\frac{a}{b}$的值为-2或$-\frac{2}{3}$.
其中真命题的序号为①②③(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在平面直角坐标系xOy中,已知直线l的参数方程$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为$8\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+bn=0,(n∈N*)的两根,且a1=1
(1)求证:数列{an-$\frac{1}{3}$×2n}是等比数列;
(2)求数列{an}的前n项和Sn
(3)若bn-mSn>0对任意的n∈N*都成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直角梯形ABCP如图①所示,其中∠ABC=∠BCD=90°,AB=BC=AD=CD=PD;现沿AD进行翻折,使得PD⊥DC,得到如图②所示的多面体ABCDPE,其中PD∥2EC,PD=2EC,PF=BF.

(1)求证:PD⊥EF;
(2)若PD=4,求多面体ABCDPE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两焦点为F1,F2,离心率为$\frac{{\sqrt{2}}}{2}$,直线l与椭圆相交于A(x1,y1),B(x2,y2)两点,且满足$|A{F_1}|+|A{F_2}|=4\sqrt{2}$,O为坐标原点.
(1)求椭圆的方程;
(2)设向量$\overrightarrow m=(\frac{x_1}{b},\frac{y_1}{a})$,$\overrightarrow n=(\frac{x_2}{b},\frac{y_2}{a})$,且$\overrightarrow m•\overrightarrow n=0$,试证明△AOB的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点F是抛物线C:y=ax2(a≠0)的焦点,点A在抛物线C上,则以线段AF为直径的圆与x轴的位置关系是(  )
A.相离B.相交C.相切D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将函数f(x)=sin(ωx+φ)(ω>0)的图象向左平移$\frac{π}{2}$个单位,若所得图象与原图象重合,则ω的值可能等于(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.对于数列{an},若${a_1}=a+\frac{1}{a}(a>0且a≠1),{a_{n+1}}={a_1}-\frac{1}{{{a_n}.}}$
(1)求a2,a2,a4,并猜想{an}的表达式;
(2)用数学归纳法证明你的猜想.

查看答案和解析>>

同步练习册答案