精英家教网 > 高中数学 > 题目详情
10.在平面直角坐标系xOy中,已知直线l的参数方程$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为$8\sqrt{2}$.

分析 直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长.

解答 解:直线l的参数方程为$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数),化为普通方程为x+y=3,
与抛物线y2=4x联立,可得x2-10x+9=0,
∴交点A(1,2),B(9,-6),
∴|AB|=$\sqrt{64+64}$=8$\sqrt{2}$.
故答案为:8$\sqrt{2}$.

点评 本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知:[2(x-1)-1]9=a0+a1(x-1)+a2(x-1)2+…+a9(x-1)9
(1)求a2的值;
(2)求a1+a2+a3+…+a9的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a,b∈R,c∈[0,2π),若对任意实数x都有2sin(3x-$\frac{π}{3}$)=asin(bx+c),定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是d个,则满足条件的有序实数组(a,b,c,d)的组数为(  )
A.7B.11C.14D.28

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在锐角△ABC中,三个内角A,B,C的对边分别为a,b,c,sinA=$\frac{3\sqrt{10}}{10}$,asinA+bsinB=csinC+$\frac{2\sqrt{5}}{5}$asinB.
(Ⅰ)求B的值;
(Ⅱ)设b=$\sqrt{5}$,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某县10000名学生的某次数学考试成绩X服从正态分布,其密度函数曲线如图,则成绩X位于区间(52,68]的人数大约是6820.
P(μ-σ<X≤μ+σ)=0.6826,
P(μ-2σ<X≤μ+2σ)=0.9544,
P(μ-3σ<X≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在正三棱锥S-ABC中,AB=$\sqrt{2}$,M是SC的中点,AM⊥SB,则正三棱锥S-ABC外接球的球心到平面ABC的距离为$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.二阶矩阵A有特征值λ=6,其对应的一个特征向量为$\overrightarrow e=[\begin{array}{l}1\\ 1\end{array}]$,并且矩阵A对应的变换将点(1,2)变换成点(8,4),求矩阵A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.由曲线y=$\sqrt{x}$,直线x=2及x轴所围图形的面积为$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知角α的终边经过点P(-2,1),求值$\frac{1}{sin2α}$=-$\frac{5}{4}$.

查看答案和解析>>

同步练习册答案