精英家教网 > 高中数学 > 题目详情
13.若偶函数f(x)在区间(-∞,0]上单调递减,且f(3)=0,则不等式(x-1)f(x)>0的解集是(  )
A.(-∞,-1)∪(1,+∞)B.(-3,1)∪(3,+∞)C.(-∞,-3)∪(3,+∞)D.(-3,1]∪(3,+∞)

分析 根据题意,由函数的奇偶性与单调性分析可得当x<-3或x>3时,f(x)>0;当-3<x<3时,f(x)<0,则分x<-3或x>3与-3<x<3两种情况讨论(x-1)f(x)>0的解集,综合即可得答案.

解答 解:根据题意,偶函数f(x)在区间(-∞,0]上单调递减,则其在[0,+∞)上为增函数,
又由f(3)=0,则f(-3)=0,
则有当x<-3或x>3时,f(x)>0;当-3<x<3时,f(x)<0,
当x<-3或x>3时,若(x-1)f(x)>0,必有x-1>0,解可得x>3,
当-3<x<3时,若(x-1)f(x)>0,必有x-1<0,解可得-3<x<1,
综合可得:不等式(x-1)f(x)>0的解集是(-3,1)∪(3,+∞);
故选:B.

点评 本题考查函数的奇偶性与单调性的综合应用,注意结合函数的奇偶性、单调性,对不等式进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx,g(x)=f(x)+mx2-(2m+1)x.
(Ⅰ)当m=1时,求曲线y=g(x)在x=2处的切线方程;
(Ⅱ)当m>0时,讨论函数g(x)的单调性;
(Ⅲ)设斜率为k的直线与函数f(x)的图象交于P(x1,y1),Q(x2,y2)两点,其中x1<x2,求证:$\frac{1}{x_2}<k<\frac{1}{x_1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}的前n项和为Sn,且2Sn=(n+2)an-1(n∈N*).
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)设Tn=$\frac{1}{{{a_1}{a_3}}}+\frac{1}{{{a_2}{a_4}}}+\frac{1}{{{a_3}{a_5}}}+…+\frac{1}{{{a_n}{a_{n+2}}}}$,求证:Tn<$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.图书馆的书架有三层,第一层有3本不同的数学书,第二场有4本不同的语文书,第三层有5本不同的英语书,现从中任取一本书,共有(  )种不同的取法.
A.120B.16C.12D.60

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知△ABC中,内角A,B,C的对边分别为a,b,c,若a,b,c成等比数列,则$\frac{{{a^2}+{b^2}}}{ab}$的取值范围为[2,$\sqrt{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线2mx-y-4m+1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x-1)2+y2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知X~B(10,$\frac{1}{3}$),则(  )
A.EX=$\frac{10}{3}$,DX=$\frac{20}{3}$B.EX=$\frac{20}{3}$,DX=$\frac{10}{3}$C.EX=$\frac{10}{3}$,DX=$\frac{20}{9}$D.EX=$\frac{20}{3}$,DX=$\frac{20}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合U={1,2,3,4,5},集合A={1,2,3},则∁UA=(  )
A.{1,2,3}B.{4,5}C.{1,2,3,4,5}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=x+2cosx,x∈(0,π)的单调减区间是($\frac{π}{6}$,$\frac{5π}{6}$).

查看答案和解析>>

同步练习册答案