精英家教网 > 高中数学 > 题目详情
7.已知各项为正的数列{an}的前n项的乘积为Tn,点(Tn,n2-15n)在函数y=log2x的图象上,则数列{log2an}的前10项和为(  )
A.-140B.-50C.124D.156

分析 依题意可知Tn=${2}^{{n}^{2}-15n}$,利用an=$\frac{{T}_{n}}{{T}_{n-1}}$=$\frac{1}{{2}^{16-2n}}$(n≥2),n=1时,符合,可得log2an=2n-16,利用分组求和法,可求得列{log2an}的前10项和.

解答 解:∵各项为正的数列{an}的前n项的乘积为Tn
点(Tn,n2-15n)在函数y=log2x的图象上,
∴n2-15n=log2Tn
Tn=${2}^{{n}^{2}-15n}$,
∴an=$\frac{{T}_{n}}{{T}_{n-1}}$=$\frac{{2}^{{n}^{2}-15n}}{{2}^{{(n-1)}^{2}-15(n-1)}}$=$\frac{1}{{2}^{16-2n}}$(n≥2),n=1时,也符合,
∴log2an=2n-16.
∴数列{log2an}的前10项和为:2(1+2+…+10)-16×10=110-160=-50.
故选:B.

点评 本题考查数列的求和,求得log2an=2n-16是关键,考查函数思想与等价转化思想的运用,考查等差数列的求和公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.不等式$\frac{x-1}{{{x^2}-x-6}}$≥0的解集为(  )
A.(-∞,-2)∪(3,+∞)B.(-∞,-2)∪[1,3)C.(-2,1]∪(3,+∞)D.(-2,1)∪[1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)是定义在R上的偶函数,且x≥0时,f(x)=($\frac{1}{2}$)x
(1)求f(-1)的值;
(2)记函数f(x)的值域A,不等式(x-a)(x-a-2)≤0的解集为B,若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算下来各式:
(1)化简:a•$\sqrt{a}$•$\root{4}{{a}^{3}}$;
(2)求值:log535+2log0.5$\sqrt{2}$-log5$\frac{1}{50}$-log514+5${\;}^{lo{g}_{5}3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次,根据年龄将大众评委分为5组,各组的人数如表:
组别ABCDE
人数5050150150100
(1)为了调查评委对7位歌手的支持状况,现用分层抽样方法从各组中抽取若干评委,其中从E组中抽取了8人.请将其余各组抽取的人数填入如表.
组别ABCDE
人数5050150150100
抽取人数8
(2)在(1)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,设每位评委支持歌手不相互影响,求这2人至少有1人支持1号歌手的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数f(x)在R上存在导函数f′(x),对于任意的实数x,都有f(x)=4x2-f(-x),当x∈(-∞,0)时,f′(x)+$\frac{1}{2}$<4x,若f(m+1)≤f(-m)+4m+2,则实数m的取值范围是(  )
A.[-$\frac{1}{2}$,+∞)B.[-$\frac{3}{2}$,+∞)C.[-1,+∞)D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等比数列-3,-6,…的第四项等于(  )
A.-24B.-9C.-12D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+ax2+3x-9.
(1)若a=-1时,求函数f(x)在点(2,f(2))处的切线方程;
(2)若函数f(x)在x=-3时取得极值,当x∈[-4,-1]时,求使得f(x)≥m恒成立的实数m的取值范围;
(3)若函数f(x)在区间[1,2]上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设A={x|x2+ax+b=0},B={x|x2+cx+15=0}.若A∩B={3},A∪B={1,3,5},试求实数a,b,c的值.

查看答案和解析>>

同步练习册答案