精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 )的上、下两个焦点分别为 ,过的直线交椭圆于 两点,且的周长为8,椭圆的离心率为.

(1)求椭圆的标准方程;

(2)已知为坐标原点,直线 与椭圆有且仅有一个公共点,点 是直线上的两点,且 ,求四边形面积的最大值.

【答案】(1).(2)4.

【解析】试题分析:(1)首先根据椭圆中焦点三角形周长结论可得,,然后由即可得椭圆的基本量求解方程2)直线与椭圆只有一个交点,则联立后方程=0mk的关系式,然后由点到直线距离公式得d1d2,写出四边形的面积,将各量代入化简求解即可

试题解析:

(1)因为的周长为8,所以,所以.又因为,所以,所以

所以椭圆的标准方程为.

(2)将直线的方程代入到椭圆方程中,得 .

由直线与椭圆仅有一个公共点,知 ,化简得.

所以

所以

.

因为四边形的面积

所以

.

),则

所以当时, 取得最大值为16,故,即四边形面积的最大值为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥A-BCD中,ABAD,BCBD,平面ABD平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EFAD.

求证:(1)EF平面ABC;

(2)ADAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C的焦点与椭圆 =1的焦点相同,且渐近线方程为y=± x.
(1)求双曲线C的标准方程;
(2)设F1为双曲线的左焦点,P为双曲线C的右支上一点,且线段PF1的中点在y轴上,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y满足约束条件 ,若目标函数z=ax+by(a>0,b>0)的最大值为6,求 + 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式(x+ )( ﹣x)≥0的解集是(
A.{x|﹣ ≤x≤ }
B.{x|x≤﹣ 或x≥ }??
C.{x|x<﹣ 或x> }
D.{x|﹣ <x< }

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ).

(1)如果曲线在点处的切线方程为,求 的值;

(2)若 ,关于的不等式的整数解有且只有一个,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(1,2), =(﹣3,2),当k为何值时:
(1)k + ﹣3 垂直;
(2)k + ﹣3 平行,平行时它们是同向还是反向?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

某电视台播放甲乙两套连续剧每次播放连续剧时需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:

连续剧播放时长(分钟)

广告播放时长分钟

收视人次

70

5

60

60

5

25

已知电视台每周安排甲乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用表示每周计划播出的甲乙两套连续剧的次数.

(I)用列出满足题目条件的数学关系式并画出相应的平面区域

(II)问电视台每周播出甲乙两套连续剧各多少次才能使收视人次最多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用简单随机抽样方法从含有6个个体的总体中,抽取一个容量为2的样本,某一个体a“第一次被抽到的概率”、“第二次被抽到的概率”、“在整个抽样过程中被抽到”的概率分别是

查看答案和解析>>

同步练习册答案