精英家教网 > 高中数学 > 题目详情

【题目】用简单随机抽样方法从含有6个个体的总体中,抽取一个容量为2的样本,某一个体a“第一次被抽到的概率”、“第二次被抽到的概率”、“在整个抽样过程中被抽到”的概率分别是

【答案】
【解析】解:从含有6个个体的总体中,抽取一个容量为2的样本,
在整个抽样过程中被抽到的概率是=
一个体a第一次被抽到,表示从6个个体中抽一个个体,
被抽到的概率是
第二次被抽到表示第一次未被抽到且第二次抽到,
这是一个相互独立事件的概率,
根据相互独立事件同时发生的概率知P=
所以答案是:
【考点精析】利用相互独立事件对题目进行判断即可得到答案,需要熟知事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的上、下两个焦点分别为 ,过的直线交椭圆于 两点,且的周长为8,椭圆的离心率为.

(1)求椭圆的标准方程;

(2)已知为坐标原点,直线 与椭圆有且仅有一个公共点,点 是直线上的两点,且 ,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={(x,y)|x2+(y+1)2≤1},B={(x,y)| x+y=4m},命题P:A∩B=,命题q:直线 + =1在两坐标轴上的截距为正.
(1)若命题P为真命题,求实数m的取值范围;
(2)若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的A、B、C三个不同车间生产同一产品的数量(单位:件)如表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测.

车间

A

B

C

数量

50

150

100

(1)求这6件样品中来自A、B、C各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件商品来自相同车间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,且CD=2,AB=BC=PA=1,PD=
(1)求三棱锥A﹣PCD的体积;
(2)问:棱PB上是否存在点E,使得PD∥平面ACE?若存在,求出 的值,并加以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有各色球12只,其中5个红球,4个黑球,2个白球,1个绿球;从中随机取出1球.求:
(1)取出的1球是红球或黑球的概率;
(2)取出的1球是红球或黑球或白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,点M是平面A1B1C1D1内一点,且BM∥平面ACD1 , 则tan∠DMD1的最大值为(

A.
B.1
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图△ABC是等腰三角形,BA=BC,DC⊥平面ABC,AE∥DC,若AC=2且BE⊥AD,则(

A.AB+BC有最大值
B.AB+BC有最小值
C.AE+DC有最大值
D.AE+DC有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为ɑ 的正方体ABCD﹣A1B1C1D1中,E、F、G分别是CB.CD.CC1的中点.

(1)求直线 A1C与平面ABCD所成角的正弦的值;
(2)求证:平面A B1D1∥平面EFG.

查看答案和解析>>

同步练习册答案