【题目】某工厂的A、B、C三个不同车间生产同一产品的数量(单位:件)如表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测.
车间 | A | B | C |
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自A、B、C各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件商品来自相同车间的概率.
【答案】解:(1)因为样本容量与总体中的个体数的比是=,
所以A车间产品被选取的件数为50x=1,
B车间产品被选取的件数为150x=3,
C车间产品被选取的件数为100x=2.
(2)设6件来自A、B、C三个车间的样品分别为:A;B1 , B2 , B3;C1 , C2 .
则从6件样品中抽取的这2件产品构成的所有基本事件为:(A,B1),(A,B2),(A,B3),(A,C1),(A,C2),(B1 , B2),(B1 , B3),(B1 , C1),(B1 , C2),(B2 , B3),(B2 , C1),(B2 , C2),(B3 , C1),(B3 , C2),(C1 , C2),共15个.
每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件产品来自相同车间”,则事件D包含的基本事件有:(B1 , B2),(B1 , B3),(B2 , B3),(C1 , C2),共4个.
所以P(D)=,即这2件产品来自相同车间的概率为.
【解析】(1)求出样本容量与总体中的个体数的比,然后求解A、B、C各车间产品的数量.
(2)设6件来自A、B、C三个车间的样品分别为:A;B1 , B2 , B3;C1 , C2 . 写出从6件样品中抽取的这2件产品构成的所有基本事件.记事件D:“抽取的这2件产品来自相同车间”,写出事件D包含的基本事件,然后求解这2件产品来自相同车间的概率.
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)
某电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:
连续剧播放时长(分钟) | 广告播放时长(分钟) | 收视人次(万) | |
甲 | 70 | 5 | 60 |
乙 | 60 | 5 | 25 |
已知电视台每周安排甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用,表示每周计划播出的甲、乙两套连续剧的次数.
(I)用,列出满足题目条件的数学关系式,并画出相应的平面区域;
(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图像在点处的切线方程为.
(1)求实数的值;
(2)设是的增函数.
(i)求实数的最大值;
(ii)当取最大值时,是否存在点,使得过点且与曲线相交的任意一条直线所围成的两个封闭图形的面积总相等?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的前n项和Sn=2n+r.
(1)求实数r的值和{an}的通项公式;
(2)若数列{bn}满足b1=1,bn+1﹣bn=log2an+1 , 求bn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的参数方程为(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为, .
(Ⅰ)若直线与曲线交于不同的两点, ,当时,求的值;
(Ⅱ)当时,求曲线关于直线对称的曲线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用简单随机抽样方法从含有6个个体的总体中,抽取一个容量为2的样本,某一个体a“第一次被抽到的概率”、“第二次被抽到的概率”、“在整个抽样过程中被抽到”的概率分别是
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面给出四个命题的表述: ①直线(3+m)x+4y﹣3+3m=0(m∈R)恒过定点(﹣3,3);
②线段AB的端点B的坐标是(3,4),A在圆x2+y2=4上运动,则线段AB的中点M的轨迹方程 +(y﹣2)2=1
③已知M={(x,y)|y= },N={(x,y)|y=x+b},若M∩N≠,则b∈[﹣ , ];
④已知圆C:(x﹣b)2+(y﹣c)2=a2(a>0,b>0,c>0)与x轴相交,与y轴相离,则直线ax+by+c=0与直线x+y+1=0的交点在第二象限.
其中表述正确的是( (填上所有正确结论对应的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, .
(1)当时,求函数的单调增区间;
(2)设函数, .若函数的最小值是,求的值;
(3)若函数, 的定义域都是,对于函数的图象上的任意一点,在函数的图象上都存在一点,使得,其中是自然对数的底数, 为坐标原点.求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com