【题目】(本小题满分13分)
某电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:
连续剧播放时长(分钟) | 广告播放时长(分钟) | 收视人次(万) | |
甲 | 70 | 5 | 60 |
乙 | 60 | 5 | 25 |
已知电视台每周安排甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用,表示每周计划播出的甲、乙两套连续剧的次数.
(I)用,列出满足题目条件的数学关系式,并画出相应的平面区域;
(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多?
科目:高中数学 来源: 题型:
【题目】已知椭圆: ()的上、下两个焦点分别为, ,过的直线交椭圆于, 两点,且的周长为8,椭圆的离心率为.
(1)求椭圆的标准方程;
(2)已知为坐标原点,直线: 与椭圆有且仅有一个公共点,点, 是直线上的两点,且, ,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A、B、C的坐标分别为A(4,0),B(0,4),C(3cosα,3sinα).
(1)若α∈(﹣π,0),且| |=| |,求角α的大小;
(2)若 ⊥ ,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式exf(x)>4+2ex(其中e为自然对数的底数)的解集为( )
A.(1,+∞)
B.(﹣∞,0)∪(1,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(﹣∞,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={(x,y)|x2+(y+1)2≤1},B={(x,y)| x+y=4m},命题P:A∩B=,命题q:直线 + =1在两坐标轴上的截距为正.
(1)若命题P为真命题,求实数m的取值范围;
(2)若“p∨q”为真,“p∧q”为假,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂的A、B、C三个不同车间生产同一产品的数量(单位:件)如表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测.
车间 | A | B | C |
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自A、B、C各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件商品来自相同车间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图△ABC是等腰三角形,BA=BC,DC⊥平面ABC,AE∥DC,若AC=2且BE⊥AD,则( )
A.AB+BC有最大值
B.AB+BC有最小值
C.AE+DC有最大值
D.AE+DC有最小值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com