精英家教网 > 高中数学 > 题目详情

【题目】已知 =(1,2), =(﹣3,2),当k为何值时:
(1)k + ﹣3 垂直;
(2)k + ﹣3 平行,平行时它们是同向还是反向?

【答案】
(1)解:由题意可得 k + =(k﹣3,2k+2), ﹣3 =(10,﹣4),

由 k + ﹣3 垂直可得 (k﹣3,2k+2)(10,﹣4)=10(k﹣3)+(2k+2)(﹣4)=0,解得k=19


(2)解:由 k + ﹣3 平行,可得(k﹣3)(﹣4)﹣(2k+2)×10=0,解得k=﹣

此时,k + =﹣ + =(﹣ ), ﹣3 =(10,﹣4),显然k + ﹣3 方向相反


【解析】(1)由题意可得 k + ﹣3 的坐标,由 k + ﹣3 垂直可得它们的数量积等于 0,由此解得k的值.(2)由 k + ﹣3 平行的性质,可得(k﹣3)(﹣4)﹣(2k+2)×10=0,解得k的值.再根据 k + ﹣3 的坐标,可得k + ﹣3 方向相反.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面内给定三个向量 =(3,2), =(﹣1,2), =(4,1).回答下列问题:
(1)若( +k )∥(2 ),求实数k;
(2)设 =(x,y)满足( )∥( + )且| |=1,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线y=x+b与圆x2+y2﹣2x+4y﹣4=0相交于A,B两点,O为坐标原点,若 =0,则实数b的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的上、下两个焦点分别为 ,过的直线交椭圆于 两点,且的周长为8,椭圆的离心率为.

(1)求椭圆的标准方程;

(2)已知为坐标原点,直线 与椭圆有且仅有一个公共点,点 是直线上的两点,且 ,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣4x﹣4y+4=0,点E(3,4).
(1)过点E的直线l与圆交与A,B两点,若AB=2 ,求直线l的方程;
(2)从圆C外一点P(x1 , y1)向该圆引一条切线,切点记为M,O为坐标原点,且满足PM=PO,求使得PM取得最小值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B、C的坐标分别为A(4,0),B(0,4),C(3cosα,3sinα).
(1)若α∈(﹣π,0),且| |=| |,求角α的大小;
(2)若 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式exf(x)>4+2ex(其中e为自然对数的底数)的解集为(
A.(1,+∞)
B.(﹣∞,0)∪(1,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(﹣∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={(x,y)|x2+(y+1)2≤1},B={(x,y)| x+y=4m},命题P:A∩B=,命题q:直线 + =1在两坐标轴上的截距为正.
(1)若命题P为真命题,求实数m的取值范围;
(2)若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,点M是平面A1B1C1D1内一点,且BM∥平面ACD1 , 则tan∠DMD1的最大值为(

A.
B.1
C.2
D.

查看答案和解析>>

同步练习册答案