精英家教网 > 高中数学 > 题目详情
设{an}是一个公差为d(d≠0)的等差数列,它的前10项和S10=110,且a1,a2,a4成等比数列
(1)证明:a1=d;
(2)求公差d的值和数列{an}的通项公式;
(3)若数列{bn}满足bn=
4
anan+1
,求{bn}的前n项和.
考点:等差数列与等比数列的综合
专题:综合题,等差数列与等比数列
分析:(1)由已知可得a22=a1•a4,代入等差数列的通项可转化为(a1+d)2=a1•(a1+3d),整理可得a1=d;
(2)结合(1)由条件S10=110,求出d=2,即可求出数列{an}的通项公式;
(3)若数列{bn}满足bn=
4
anan+1
,可得通项,再求{bn}的前n项和.
解答: (1)证明:因a1,a2,a4成等比数列,故a22=a1a4
而{an}是等差数列,有a2=a1+d,a4=a1+3d
于是(a1+d)2=a1(a1+3d)
即a12+2a1d+d2=a12+3a1d
化简得a1=d
(2)解:由条件S10=110,得到10a1+45d=110
由(1),a1=d,代入上式得55d=110
故d=2,an=a1+(n-1)d=2n
因此,数列{an}的通项公式为an=2n;
(3)解:bn=
4
anan+1
=
1
n(n+1)
=
1
n
-
1
n+1

∴{bn}的前n项和为1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1
点评:本小题主要考查等差数列及其通项公式,等差数列前n项和公式以及等比中项等基础知识,考查运算能力和推理论证能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sin2ωx+
3
cosωx•cos(
π
2
-ωx)(ω>0),且函数y=f(x)的图象相邻两条对称轴之间的距离为
π
2

(Ⅰ)求f(x)的对称中心;
(Ⅱ)当x∈[0,π]时,求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a2+b2=1,c2+d2=1,求证:|ac+bd|≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

解下列不等式并将结果用集合的形式表示.
(1)-x2-2x+3>0;
(2)
2x-1
x+1
≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3-
1
2
x2-2x+5.
(1)求函数f(x)的单调递增、递减区间;
(2)当x∈[-1,2]时,f(x)<m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-3,g(x)=bx-1+cx-2(a,b∈R)且g(-
1
2
)-g(1)=f(0).
(1)试求b,c所满足的关系式;
(2)若b=0,试讨论方程f(x)+x|x-a|g(x)=0零点的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=1,过第一象限内一点P(a,b)作圆C的两条切线,切点分别为A、B,若∠APB=60°,则a+b的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|x-3|+|x+2|≥5的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

渐近线方程为y=±
3
2
x,实轴长为12的双曲线的标准方程为
 

查看答案和解析>>

同步练习册答案