精英家教网 > 高中数学 > 题目详情
11.设集合M={1,3},N={1,2,3},则M∪N=(  )
A.{2}B.{1,2}C.{1,3}D.{1,2,3}

分析 直接利用并集的定义求解即可.

解答 解:集合M={1,3},N={1,2,3},则M∪N={1,2,3}.
故选:D.

点评 本题考查并集的运算,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设f(x)=2|x|,则${∫}_{-2}^{4}$f(x)dx=(  )
A.$\frac{12}{ln2}$B.$\frac{20}{ln2}$C.$\frac{18}{ln2}$D.$\frac{16}{ln2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在200件产品中,192有件一级品,8件二级品,则下列事件:
①在这200件产品中任意选出9件,全部是一级品;
②在这200件产品中任意选出9件,全部是二级品;
③在这200件产品中任意选出9件,不全是一级品;
④在这200件产品中任意选出9件,其中不是一级品的件数小于100,其中随机事件是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.对于向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$和实数λ,下列判断正确的是(  )
A.若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$B.若λ$\overrightarrow{a}$=0,则λ=0C.若$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{b}$•$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{b}$D.若$\overrightarrow{a}$=$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{b}$•$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC.
(Ⅰ)求证:AC⊥BA1
(Ⅱ)若M为A1C1的中点,问棱AB上是否存在点N,使得MN∥平面BCC1B1?若存在,求出$\frac{A{N}_{1}}{NB}$的值,并给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.命题P:“对于任意的x∈R,cosx≥1”,则命题P的否定是(  )
A.存在x0∈R,cosx0≥1B.对于任意的x∈R,cosx<1
C.存在x0∈R,cosx0<1D.对于任意的x∈R,cosx>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$与$\overrightarrow{b}$夹角为60°,则$\vec b•(\vec b-\vec a)$等于(  )
A.1B.3C.2-$\sqrt{3}$D.4-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列各组函数f(x)与g(x)的图象相同的是(  )
A.f(x)=(x-1)0与g(x)=1B.f(x)=x与g(x)=$\sqrt{x^2}$
C.f(x)=$\frac{{{x^2}-4}}{x-2}$,g(x)=x+2D.f(x)=|x|,g(x)=$\left\{\begin{array}{l}x(x≥0)\\-x(x<0)\end{array}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=sin(2x-$\frac{π}{4}$),则f(x)的最小正周期和一个单调增区间分别为(  )
A.π,[-$\frac{π}{4}$,$\frac{π}{4}$]B.π,[-$\frac{π}{8}$,$\frac{3π}{8}$]C.2π,[-$\frac{π}{4}$,$\frac{3π}{4}$]D.2π,[-$\frac{π}{4}$,$\frac{π}{4}$]

查看答案和解析>>

同步练习册答案