精英家教网 > 高中数学 > 题目详情
3.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$与$\overrightarrow{b}$夹角为60°,则$\vec b•(\vec b-\vec a)$等于(  )
A.1B.3C.2-$\sqrt{3}$D.4-$\sqrt{3}$

分析 将所求展开,利用已知得到数量积,可求.

解答 解:因为|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$与$\overrightarrow{b}$夹角为60°,则$\vec b•(\vec b-\vec a)$=${\overrightarrow{b}}^{2}-\overrightarrow{b}•\overrightarrow{a}$=4-1×2×cos60°=3;
故选B.

点评 本题考查了平面向量的数量积公式的运用;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个非零向量,且|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}$与$\overrightarrow{b}$夹角的大小为(  )
A.120°B.90°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=a(x-1)2+lnx,a∈R.
(Ⅰ)当a=-$\frac{1}{4}$时,求函数y=f(x)的单调区间;
(Ⅱ)a=$\frac{1}{2}$时,令h(x)=f(x)-3lnx+x-$\frac{1}{2}$.求h(x)在[1,e]上的最大值和最小值;
(Ⅲ)若函数f(x)≤x-1对?x∈[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合M={1,3},N={1,2,3},则M∪N=(  )
A.{2}B.{1,2}C.{1,3}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设P是曲线y=$\sqrt{1{-x}^{2}}$上的点,若对曲线y=x+$\frac{a}{x}$(a>0,x>0)上的任意一点Q,恒有|PQ|≥1,则a的取值范围是(  )
A.[$\sqrt{2}$-1,+∞)B.[2$\sqrt{2}$-2,+∞)C.[$\frac{4}{5}$,+∞)D.(0,2$\sqrt{2}$-2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.阅读如图的程序框图.若输入n=1,则输出k的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.把座位编号为1,2,3,4,5,6的6张电影票分给甲、乙、丙、丁四个人,每人至少分一张,至多分两张,且分得的两张票必须是连号,那么不同分法种数为(  )
A.240B.144C.196D.288

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.把函数y=sinx的图象上所有点向右平移$\frac{π}{3}$个单位,再将图象上所有点的横坐标缩小到原来的$\frac{1}{2}$(纵坐标不变),所得函数解析式为y=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<0),则(  )
A.ω=2,φ=-$\frac{π}{3}$B.ω=2,φ=-$\frac{π}{6}$C.ω=$\frac{1}{2},φ=-\frac{π}{6}$D.ω=$\frac{1}{2},φ=-\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图几何体中,正视图、侧视图都为长方形的几何体有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案