精英家教网 > 高中数学 > 题目详情
3.已知抛物线C:y2=4x,倾斜角为α的直线l过点F(1,0),且与抛物线C交于A,B两点,A,B在直线x=-1上的射影分别为A1,B1,记m=$\overrightarrow{F{A}_{1}}$$•\overrightarrow{F{B}_{1}}$,则(  )
A.m>0B.m<0C.m=0D.m值与α有关

分析 由抛物线的定义及内错角相等,可得∠AFA1=∠A1FK,同理可证∠BFB1=∠B1FK,再利用平角为180°,即∠AFA1+∠A1FK+∠BFB1+∠B1FK=180°,∠A1FB1=90°,m=$\overrightarrow{F{A}_{1}}$$•\overrightarrow{F{B}_{1}}$=丨$\overrightarrow{F{A}_{1}}$丨•丨$\overrightarrow{F{A}_{2}}$丨cos∠A1FB1=0.

解答 解:由题意可知:抛物线C:y2=4x,焦点坐标F(1,0),准线方程x=-1,
如图:设准线与x轴的交点为K,
∵A、B在抛物线的准线上的射影为A1、B1
由抛物线的定义可得,丨AA1丨=丨AF丨,
∴∠AA1F=∠AFA1
又由内错角相等可知:∠AA1F=∠A1FK,
∴∠AFA1=∠A1FK.
同理可证∠BFB1=∠B1 FK.   
由∠AFA1+∠A1FK+∠BFB1+∠B1FK=180°,
∴∠A1FK+∠B1FK=∠A1FB1=90°,
∴∠A1FB1=90°,
∵m=$\overrightarrow{F{A}_{1}}$$•\overrightarrow{F{B}_{1}}$=丨$\overrightarrow{F{A}_{1}}$丨•丨$\overrightarrow{F{A}_{2}}$丨cos∠A1FB1=0,
故选C.

点评 本题考查抛物线的简单性质,抛物线的定义,考查两条直线平行,内错角相等,考查向量的数量积,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知数列满足${S_n}=2{n^2}-n+1$,则通项公式an=$\left\{\begin{array}{l}{2,}&{n=1}\\{4n-3,}&{n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.不等式|2-x|<1的解集为(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=$\frac{lg(5-x)}{x-2}$的定义域为{x|x<5且x≠2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{x}{x+b}$(b≠0且b是常数).
(1)如果方程f(x)=x有唯一解,求b值.
(2)在(1)的条件下,求证:f(x)在(-∞,-1)上是增函数;
(3)若函数f(x)在(1,+∞)上是减函数,求负数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{(6-a)x-4a,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$是R上的增函数,则实数a的范围是[$\frac{6}{5}$,6).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=3sinx+4cosx的最大值为(  )
A.25B.7C.5D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如果p⇒q,且q⇒p,则p是q的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知P(x0,y0)是椭圆C:$\frac{x^2}{a^2}+{y^2}$=1上一点,过原点的斜率分别为k1,k2的两条直线与圆(x-x02+(y-y02=$\frac{4}{5}$分别相切于A,B两点.
(1)若椭圆离心率为$\frac{{\sqrt{3}}}{2}$,求椭圆的标准方程;
(2)在(1)的条件下,求k1k2的值.

查看答案和解析>>

同步练习册答案