精英家教网 > 高中数学 > 题目详情
13.已知数列满足${S_n}=2{n^2}-n+1$,则通项公式an=$\left\{\begin{array}{l}{2,}&{n=1}\\{4n-3,}&{n≥2}\end{array}\right.$.

分析 根据数列通项公式与前n项和的关系进行求解即可.

解答 解:当n≥2时,an=Sn-Sn-1=2n2-n+1-[2(n+1)2-(n+1)+1]=4n-3,
当n=1时,a1=2-1+1=2,不满足条an=4n-3,
则通项公式an=$\left\{\begin{array}{l}{2,}&{n=1}\\{4n-3,}&{n≥2}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{2,}&{n=1}\\{4n-3,}&{n≥2}\end{array}\right.$

点评 本题主要考查数列通项公式的求解,根据当n≥2时,an=Sn-Sn-1是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在平行六面体ABCD-EFGH中,若$\overrightarrow{AG}$=2x$\overrightarrow{AB}$+3y$\overrightarrow{BC}$+3z$\overrightarrow{HD}$,则x+y+z等于(  )
A.$\frac{7}{6}$B.$\frac{2}{3}$C.$\frac{5}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.幂函数f(x)过点(2,$\frac{1}{2}$),则f(x)的单调递减区间是(  )
A.(0,+∞)B.(-∞,0)C.(-∞,0),(0,+∞)D.(-∞,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若实数x,y满足不等式组$\left\{\begin{array}{l}{x+3y-3≥0}\\{2x-y-3≤0}\\{x-y+1≥0}\end{array}\right.$求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,已知矩形ABCD与矩形ABEF全等,二面角DABE为直二面角,M为AB的中点,FM与BD所成的角为θ,且cos θ=$\frac{\sqrt{3}}{9}$,则$\frac{AB}{BC}$=(  )
A.1B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线l:ay=(3a-1)x-1,无论a为何值,直线l总过定点(-1,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合M={-1,0,1},N={x|0≤x≤1},则M∩N=(  )
A.{0}B.{0,1}C.{-1,1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱台ABC-A1B1C1中,平面α过点A1,B1,且CC1∥平面α,平面α与三棱台的面相交,交线围成一个四边形.
(Ⅰ)在图中画出这个四边形,并指出是何种四边形(不必说明画法、不必说明四边形的形状);
(Ⅱ)若AB=8,BC=2B1C1=6,AB⊥BC,BB1=CC1,平面BB1C1C⊥平面ABC,二面角B1-AB-C等于60°,求直线AB1与平面α所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线C:y2=4x,倾斜角为α的直线l过点F(1,0),且与抛物线C交于A,B两点,A,B在直线x=-1上的射影分别为A1,B1,记m=$\overrightarrow{F{A}_{1}}$$•\overrightarrow{F{B}_{1}}$,则(  )
A.m>0B.m<0C.m=0D.m值与α有关

查看答案和解析>>

同步练习册答案